import matplotlib.pyplot as plt import time import Lorentzian_fit as LF from qinfer.expdesign import ExperimentDesigner import os import logging log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) model = T1Model() prior = UniformDistribution([0, 100]) N_particles=100000 updater = SMCUpdater(model, N_particles, prior, resampler=LiuWestResampler(0.98),zero_weight_policy='reset') designer=ExperimentDesigner(updater,opt_algo=1) #Set the value of T1 to Learn, pick 1 value from prior #true_model=prior.sample() true_model=np.array([6.8], dtype=model.expparams_dtype) performance_dtype = [ ('expparams', 'float'), ('sim_outcome', 'float'), ('est_mean', 'float'), ('covariance', 'float'), ] #NMR EXPERIMENT Initialization******************************* #going to normalize Mo max of 1.
import numpy as np import matplotlib.pyplot as plt from qinfer.expdesign import ExperimentDesigner import logging log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) model = T1Model() prior = UniformDistribution(np.array([0, 10])) N_particles = 1000000 updater = SMCUpdater( model, N_particles, prior, resampler=LiuWestResampler(), zero_weight_policy='reset' ) designer = ExperimentDesigner(updater, opt_algo=1) # Set the value of T1 to Learn, pick 1 value from prior true_model = prior.sample() # true_model=np.array([11.032], dtype=model.expparams_dtype) performance_dtype = [ ('expparams', 'float'), ('sim_outcome', 'float'), ('est_mean', 'float'), ] # NMR EXPERIMENT Initialization******************************* # going to normalize Mo max of 1. # model.Mo=float(raw_input('Please enter Mo: ')) # dummy=float(raw_input('Waiting for Mo: '))