def test_classical_binary(self): """ classical binary test """ training_input = { 'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.79687342, 0.26933706], [0.39016555, -0.08469916], [0.3994399, 0.13601573], [0.26752049, -0.03978988], [0.24026485, 0.01953518], [0.49490503, 0.17239737], [0.70171827, 0.5323737], [0.43221576, 0.42357294], [0.62864856, 0.45504447], [0.6259567, 0.30917324], [0.58272403, 0.20760754], [0.3938784, 0.17184466], [0.14154948, 0.06201424], [0.80202323, 0.40582692], [0.46779595, 0.39946754], [0.57660199, 0.21821317], [0.51044761, 0.03699459], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [-0.30119743, -0.11221681], [-0.16479252, -0.08640519], [-0.21808884, -0.56508327], [-0.14683258, -0.46528508], [-0.05888195, -0.51474852], [0.20517435, -0.66839091], [0.25475584, -0.21239966], [0.55194854, 0.02789679], [-0.11542951, -0.54157026], [0.44625538, -0.49485869], [-0.14609118, -0.60719757], [0.18121305, -0.1922198], [0.19283785, -0.31798925], [0.29626405, -0.54563098], [-0.39044304, -0.36527253], [-0.29432215, -0.43924164], [-0.40294517, -0.31381308], [0.49156185, -0.3660534]]) } test_input = { 'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.08791134, 0.11515506], [0.45988094, 0.32854319], [0.53015085, 0.41539212], [0.5073321, 0.47346751], [0.71081819, 0.19202569], [1., 0.51698289], [0.630973, 0.19898666], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [-0.17323832, -0.49535592], [0.14043268, -0.87869109], [-0.15046837, -0.47340207], [-0.39600934, -0.21647957], [-0.394202, -0.44705385], [0.15243621, -0.36695163], [0.06195634, -0.23262325], [0.06183066, -0.53376975]]) } temp = [test_input[k] for k in sorted(test_input)] total_array = np.concatenate(temp) try: result = SVM_Classical(training_input, test_input, total_array).run() self.assertEqual(result['testing_accuracy'], 1.0) self.assertEqual(result['predicted_classes'], [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ]) except NameError as ex: self.skipTest(str(ex))
new_training_input = {} new_test_input = {} for key in training_input: array_train = [] array_test= [] for i in (range(len(training_input[key]))): if (i%2==0): array_train += [training_input[key][i]] else: array_test += [training_input[key][i]] new_training_input.update({key: array_train}) new_test_input.update({key: array_train}) multi_ext_classical = OneAgainstRest(_RBF_SVC_Estimator) svm = SVM_Classical(new_training_input, new_test_input, multiclass_extension=multi_ext_classical) feature_map = PauliExpansion(feature_dimension=feature_dim, depth=2, paulis=['Z', 'ZZ'], entanglement='linear') multi_ext_quantum = OneAgainstRest(_QSVM_Estimator, [feature_map]) qsvm = QSVM(feature_map, new_training_input, new_test_input, multiclass_extension=multi_ext_quantum) seed = 1001 backend = Aer.get_backend('qasm_simulator') #device = IBMQ.get_provider().get_backend('ibmqx2') classical_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed) quantum_instance = QuantumInstance(backend, shots=1024, seed=seed, seed_transpiler=seed, circuit_caching=False, skip_qobj_validation=False) #start_classical = timeit.default_timer() #result_classical = svm.run(classical_instance) #elapsed_classical = timeit.default_timer() - start_classical
def test_classical_multiclass_one_against_all(self): """ classical multiclass one against all test """ training_input = { 'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.79687342, 0.26933706], [0.39016555, -0.08469916], [0.3994399, 0.13601573], [0.26752049, -0.03978988], [0.24026485, 0.01953518], [0.49490503, 0.17239737], [0.70171827, 0.5323737], [0.43221576, 0.42357294], [0.62864856, 0.45504447], [0.6259567, 0.30917324], [0.58272403, 0.20760754], [0.3938784, 0.17184466], [0.14154948, 0.06201424], [0.80202323, 0.40582692], [0.46779595, 0.39946754], [0.57660199, 0.21821317], [0.51044761, 0.03699459], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [-0.30119743, -0.11221681], [-0.16479252, -0.08640519], [-0.21808884, -0.56508327], [-0.14683258, -0.46528508], [-0.05888195, -0.51474852], [0.20517435, -0.66839091], [0.25475584, -0.21239966], [0.55194854, 0.02789679], [-0.11542951, -0.54157026], [0.44625538, -0.49485869], [-0.14609118, -0.60719757], [0.18121305, -0.1922198], [0.19283785, -0.31798925], [0.29626405, -0.54563098], [-0.39044304, -0.36527253], [-0.29432215, -0.43924164], [-0.40294517, -0.31381308], [0.49156185, -0.3660534]]), 'C': np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294], [-0.54323753, 0.67630888], [-0.57685569, -0.08515631], [-0.67765364, 0.19654347], [-0.62129115, 0.22223066], [-0.78040851, 0.65247848], [-0.50730279, 0.59898039], [-0.64275805, 0.63381998], [-0.72854201, 0.14151325], [-0.57004437, 0.12344874], [-0.55215973, 0.74331215], [-0.60916047, 0.52006917], [-0.23093745, 1.], [-0.84025337, 0.5564536], [-0.66952391, 0.57918859], [-0.67725082, 0.60439934], [-1., 0.23715261], [-0.62933025, 0.19055405], [-0.82139073, 0.29941512]]) } test_input = { 'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.08791134, 0.11515506], [0.45988094, 0.32854319], [0.53015085, 0.41539212], [0.5073321, 0.47346751], [0.71081819, 0.19202569], [1., 0.51698289], [0.630973, 0.19898666], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [-0.17323832, -0.49535592], [0.14043268, -0.87869109], [-0.15046837, -0.47340207], [-0.39600934, -0.21647957], [-0.394202, -0.44705385], [0.15243621, -0.36695163], [0.06195634, -0.23262325], [0.06183066, -0.53376975]]), 'C': np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162], [-0.52649891, 0.35265538], [-0.54345106, 0.13113995], [-0.57181448, 0.13594725], [-0.33713329, 0.05095243], [-0.65741384, 0.477976], [-0.79986067, 0.41733195], [-0.73856328, 0.80699537], [-0.66489165, 0.1181712]]) } temp = [test_input[k] for k in sorted(test_input)] total_array = np.concatenate(temp) result = SVM_Classical(training_input, test_input, total_array, multiclass_extension=OneAgainstRest()).run() self.assertEqual(result['testing_accuracy'], 1.0) self.assertEqual(result['predicted_classes'], [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C' ])