def test_load_from_dict(self):
        json_dict = self.parser.get_sections()

        p = InputParser(json_dict)
        p.parse()
        dict1 = json.loads(json.dumps(self.parser.get_sections()))
        dict2 = json.loads(json.dumps(p.get_sections()))
        self.assertEqual(dict1, dict2)
    def test_is_modified(self):
        json_dict = self.parser.get_sections()

        p = InputParser(json_dict)
        p.parse()
        p.set_section_property('optimizer', 'maxfun', 1002)
        self.assertTrue(p.is_modified())
        self.assertEqual(p.get_section_property('optimizer', 'maxfun'), 1002)
    def test_load_from_dict(self):
        """ load from dict test """
        json_dict = self.parser.get_sections()

        parse = InputParser(json_dict)
        parse.parse()
        dict1 = json.loads(json.dumps(self.parser.get_sections()))
        dict2 = json.loads(json.dumps(parse.get_sections()))
        self.assertEqual(dict1, dict2)
    def test_save(self):
        save_path = self._get_resource_path('output.txt')
        self.parser.save_to_file(save_path)

        p = InputParser(save_path)
        p.parse()
        os.remove(save_path)
        dict1 = json.loads(json.dumps(self.parser.get_sections()))
        dict2 = json.loads(json.dumps(p.get_sections()))
        self.assertEqual(dict1, dict2)
    def test_validate(self):
        json_dict = self.parser.get_sections()

        p = InputParser(json_dict)
        p.parse()
        try:
            p.validate_merge_defaults()
        except Exception as e:
            self.fail(str(e))

        with self.assertRaises(AquaError):
            p.set_section_property('backend', 'max_credits', -1)
    def test_validate(self):
        json_dict = self.parser.get_sections()

        p = InputParser(json_dict)
        p.parse()
        try:
            p.validate_merge_defaults()
        except Exception as e:
            self.fail(str(e))

        p.set_section_property('optimizer', 'dummy', 1002)
        self.assertRaises(AquaError, p.validate_merge_defaults)
    def test_validate(self):
        """ validate test """
        json_dict = self.parser.get_sections()

        parse = InputParser(json_dict)
        parse.parse()
        try:
            parse.validate_merge_defaults()
        except Exception as ex:  # pylint: disable=broad-except
            self.fail(str(ex))

        with self.assertRaises(AquaError):
            parse.set_section_property('backend', 'max_credits', -1)
Exemple #8
0
    def run_algorithm_to_json(params,
                              algo_input=None,
                              jsonfile='algorithm.json'):
        """
        Run algorithm as named in params.

        Using params and algo_input as input data
        and save the combined input as a json file. This json is self-contained and
        can later be used as a basis to call run_algorithm

        Args:
            params (dict): Dictionary of params for algo and dependent objects
            algo_input (AlgorithmInput): Main input data for algorithm. Optional, an algo may run entirely from params
            jsonfile (str): Name of file in which json should be saved

        Returns:
            Result dictionary containing the jsonfile name
        """
        _discover_on_demand()

        inputparser = InputParser(params)
        inputparser.parse()
        inputparser.validate_merge_defaults()

        algo_params = copy.deepcopy(inputparser.get_sections())

        if algo_input is not None:
            input_params = algo_input.to_params()
            convert_dict_to_json(input_params)
            algo_params['input'] = input_params
            algo_params['input']['name'] = algo_input.configuration['name']

        logger.debug('Result: {}'.format(
            json.dumps(algo_params, sort_keys=True, indent=4)))
        with open(jsonfile, 'w') as fp:
            json.dump(algo_params, fp, sort_keys=True, indent=4)

        logger.info("Algorithm input file saved: '{}'".format(jsonfile))

        return {'jsonfile': jsonfile}
Exemple #9
0
def build_algorithm_from_dict(params, algo_input=None, backend=None):
    """
        Construct algorithm as named in params, using params and algo_input as input data
        and returning a QuantumAlgorithm and QuantumInstance instance

        Args:
            params (dict): Dictionary of params for algo and dependent objects
            algo_input (AlgorithmInput): Main input data for algorithm. Optional, an algo may run entirely from params
            backend (BaseBackend): Backend object to be used in place of backend name

        Returns:
            Ready-to-run QuantumAlgorithm and QuantumInstance as specified in input parameters. Note that
            no QuantumInstance will be returned if none is specified - None will be returned instead.
        """
    _discover_on_demand()

    inputparser = InputParser(params)
    inputparser.parse()
    # before merging defaults attempts to find a provider for the backend in case no
    # provider was passed
    if backend is None and inputparser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.PROVIDER) is None:
        backend_name = inputparser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.NAME)
        if backend_name is not None:
            inputparser.set_section_property(
                JSONSchema.BACKEND, JSONSchema.PROVIDER,
                get_provider_from_backend(backend_name))

    inputparser.validate_merge_defaults()
    logger.debug('Algorithm Input: {}'.format(
        json.dumps(inputparser.get_sections(), sort_keys=True, indent=4)))

    algo_name = inputparser.get_section_property(PluggableType.ALGORITHM.value,
                                                 JSONSchema.NAME)
    if algo_name is None:
        raise AquaError('Missing algorithm name')

    if algo_name not in local_pluggables(PluggableType.ALGORITHM):
        raise AquaError(
            'Algorithm "{0}" missing in local algorithms'.format(algo_name))

    if algo_input is None:
        input_name = inputparser.get_section_property('input', JSONSchema.NAME)
        if input_name is not None:
            input_params = copy.deepcopy(
                inputparser.get_section_properties('input'))
            del input_params[JSONSchema.NAME]
            convert_json_to_dict(input_params)
            algo_input = get_pluggable_class(
                PluggableType.INPUT, input_name).from_params(input_params)

    algo_params = copy.deepcopy(inputparser.get_sections())
    algorithm = get_pluggable_class(PluggableType.ALGORITHM,
                                    algo_name).init_params(
                                        algo_params, algo_input)
    random_seed = inputparser.get_section_property(JSONSchema.PROBLEM,
                                                   'random_seed')
    algorithm.random_seed = random_seed
    quantum_instance = None
    # setup backend
    backend_provider = inputparser.get_section_property(
        JSONSchema.BACKEND, JSONSchema.PROVIDER)
    backend_name = inputparser.get_section_property(JSONSchema.BACKEND,
                                                    JSONSchema.NAME)
    if backend_provider is not None and backend_name is not None:  # quantum algorithm
        backend_cfg = {
            k: v
            for k, v in inputparser.get_section(JSONSchema.BACKEND).items()
            if k not in [JSONSchema.PROVIDER, JSONSchema.NAME]
        }
        # TODO, how to build the noise model from a dictionary?
        backend_cfg['seed_mapper'] = random_seed
        pass_manager = PassManager() if backend_cfg.pop(
            'skip_transpiler', False) else None
        if pass_manager is not None:
            backend_cfg['pass_manager'] = pass_manager

        if backend is None or not isinstance(backend, BaseBackend):
            backend = get_backend_from_provider(backend_provider, backend_name)
        backend_cfg['backend'] = backend

        # overwrite the basis_gates and coupling_map
        basis_gates = backend_cfg.pop('basis_gates', None)
        coupling_map = backend_cfg.pop('coupling_map', None)
        if backend.configuration().simulator:
            if basis_gates is not None:
                backend.configuration().basis_gates = basis_gates
            if coupling_map is not None:
                backend.configuration().coupling_map = coupling_map
        else:
            logger.warning(
                "Change basis_gates and coupling_map on a real device is disallowed."
            )

        shots = backend_cfg.pop('shots', 1024)
        seed = random_seed
        max_credits = backend_cfg.pop('max_credits', 10)
        memory = backend_cfg.pop('memory', False)
        run_config = RunConfig(shots=shots,
                               max_credits=max_credits,
                               memory=memory)
        if seed is not None:
            run_config.seed = seed
        backend_cfg['run_config'] = run_config

        backend_cfg['skip_qobj_validation'] = inputparser.get_section_property(
            JSONSchema.PROBLEM, 'skip_qobj_validation')
        use_caching = inputparser.get_section_property(JSONSchema.PROBLEM,
                                                       'circuit_caching')
        if use_caching:
            deepcopy_qobj = inputparser.get_section_property(
                JSONSchema.PROBLEM, 'skip_qobj_deepcopy')
            cache_file = inputparser.get_section_property(
                JSONSchema.PROBLEM, 'circuit_cache_file')
            backend_cfg['circuit_cache'] = CircuitCache(
                skip_qobj_deepcopy=deepcopy_qobj, cache_file=cache_file)

        quantum_instance = QuantumInstance(**backend_cfg)

    # Note that quantum_instance can be None if none is specified
    return algorithm, quantum_instance
class TestInputParser(QiskitAquaTestCase):
    """Input Parser and algorithms tests."""
    def setUp(self):
        super().setUp()
        warnings.filterwarnings("ignore",
                                message=aqua_globals.CONFIG_DEPRECATION_MSG,
                                category=DeprecationWarning)
        filepath = self._get_resource_path('H2-0.735.json')
        self.parser = InputParser(filepath)
        self.parser.parse()

    def test_save(self):
        """ save test """
        save_path = self._get_resource_path('output.txt')
        self.parser.save_to_file(save_path)

        parse = InputParser(save_path)
        parse.parse()
        os.remove(save_path)
        dict1 = json.loads(json.dumps(self.parser.get_sections()))
        dict2 = json.loads(json.dumps(parse.get_sections()))
        self.assertEqual(dict1, dict2)

    def test_load_from_dict(self):
        """ load from dict test """
        json_dict = self.parser.get_sections()

        parse = InputParser(json_dict)
        parse.parse()
        dict1 = json.loads(json.dumps(self.parser.get_sections()))
        dict2 = json.loads(json.dumps(parse.get_sections()))
        self.assertEqual(dict1, dict2)

    def test_is_modified(self):
        """ is modified test """
        json_dict = self.parser.get_sections()

        parse = InputParser(json_dict)
        parse.parse()
        parse.set_section_property('optimizer', 'maxfun', 1002)
        self.assertTrue(parse.is_modified())
        self.assertEqual(parse.get_section_property('optimizer', 'maxfun'),
                         1002)

    def test_validate(self):
        """ validate test """
        json_dict = self.parser.get_sections()

        parse = InputParser(json_dict)
        parse.parse()
        try:
            parse.validate_merge_defaults()
        except Exception as ex:  # pylint: disable=broad-except
            self.fail(str(ex))

        with self.assertRaises(AquaError):
            parse.set_section_property('backend', 'max_credits', -1)

    def test_run_algorithm(self):
        """ run algorithm test """
        filepath = self._get_resource_path('ExactEigensolver.json')
        params = None
        with open(filepath) as json_file:
            params = json.load(json_file)

        dict_ret = None
        try:
            dict_ret = run_algorithm(params, None, False)
        except Exception as ex:  # pylint: disable=broad-except
            self.fail(str(ex))

        self.assertIsInstance(dict_ret, dict)
class TestInputParser(QiskitAquaTestCase):
    """Input Parser and algorithms tests."""
    def setUp(self):
        super().setUp()
        filepath = self._get_resource_path('H2-0.735.json')
        self.parser = InputParser(filepath)
        self.parser.parse()

    def test_save(self):
        save_path = self._get_resource_path('output.txt')
        self.parser.save_to_file(save_path)

        p = InputParser(save_path)
        p.parse()
        os.remove(save_path)
        dict1 = json.loads(json.dumps(self.parser.get_sections()))
        dict2 = json.loads(json.dumps(p.get_sections()))
        self.assertEqual(dict1, dict2)

    def test_load_from_dict(self):
        json_dict = self.parser.get_sections()

        p = InputParser(json_dict)
        p.parse()
        dict1 = json.loads(json.dumps(self.parser.get_sections()))
        dict2 = json.loads(json.dumps(p.get_sections()))
        self.assertEqual(dict1, dict2)

    def test_is_modified(self):
        json_dict = self.parser.get_sections()

        p = InputParser(json_dict)
        p.parse()
        p.set_section_property('optimizer', 'maxfun', 1002)
        self.assertTrue(p.is_modified())
        self.assertEqual(p.get_section_property('optimizer', 'maxfun'), 1002)

    def test_validate(self):
        json_dict = self.parser.get_sections()

        p = InputParser(json_dict)
        p.parse()
        try:
            p.validate_merge_defaults()
        except Exception as e:
            self.fail(str(e))

        with self.assertRaises(AquaError):
            p.set_section_property('backend', 'max_credits', -1)

    def test_run_algorithm(self):
        filepath = self._get_resource_path('ExactEigensolver.json')
        params = None
        with open(filepath) as json_file:
            params = json.load(json_file)

        dict_ret = None
        try:
            dict_ret = run_algorithm(params, None, False)
        except Exception as e:
            self.fail(str(e))

        self.assertIsInstance(dict_ret, dict)
Exemple #12
0
class QiskitAqua(object):
    """Main Aqua class."""
    def __init__(self, params, algo_input=None, quantum_instance=None):
        """
        Create an QiskitAqua object

        Args:
            params (dict): Dictionary of params for algo and dependent objects
            algo_input (AlgorithmInput): Main input data for algorithm. Optional, an algo may run entirely from params
            quantum_instance (QuantumInstance or BaseBackend): the experiemental settings to be used in place of backend name
        """
        self._params = params
        self._algorithm_input = algo_input
        self._quantum_instance = None
        self._quantum_algorithm = None
        self._result = {}
        self._parser = None
        self._build_algorithm_from_dict(quantum_instance)

    @property
    def params(self):
        """Return Aqua params."""
        return self._params

    @property
    def algorithm_input(self):
        """Return Algorithm Input."""
        return self._algorithm_input

    @property
    def quantum_instance(self):
        """Return Quantum Instance."""
        return self._quantum_instance

    @property
    def quantum_algorithm(self):
        """Return Qusntum Algorithm."""
        return self._quantum_algorithm

    @property
    def result(self):
        """Return Experiment Result."""
        return self._result

    @property
    def json_result(self):
        """Return Experiment Result as JSON."""
        return convert_dict_to_json(self.result) if isinstance(
            self.result, dict) else None

    @property
    def parser(self):
        """Return Aqua parser."""
        return self._parser

    def _build_algorithm_from_dict(self, quantum_instance):
        _discover_on_demand()
        self._parser = InputParser(self._params)
        self._parser.parse()
        # before merging defaults attempts to find a provider for the backend in case no
        # provider was passed
        if quantum_instance is None and self._parser.get_section_property(
                JSONSchema.BACKEND, JSONSchema.PROVIDER) is None:
            backend_name = self._parser.get_section_property(
                JSONSchema.BACKEND, JSONSchema.NAME)
            if backend_name is not None:
                self._parser.set_section_property(
                    JSONSchema.BACKEND, JSONSchema.PROVIDER,
                    get_provider_from_backend(backend_name))

        self._parser.validate_merge_defaults()
        logger.debug('Algorithm Input: {}'.format(
            json.dumps(self._parser.get_sections(), sort_keys=True, indent=4)))

        algo_name = self._parser.get_section_property(
            PluggableType.ALGORITHM.value, JSONSchema.NAME)
        if algo_name is None:
            raise AquaError('Missing algorithm name')

        if algo_name not in local_pluggables(PluggableType.ALGORITHM):
            raise AquaError(
                'Algorithm "{0}" missing in local algorithms'.format(
                    algo_name))

        if self._algorithm_input is None:
            input_name = self._parser.get_section_property(
                'input', JSONSchema.NAME)
            if input_name is not None:
                input_params = copy.deepcopy(
                    self._parser.get_section_properties('input'))
                del input_params[JSONSchema.NAME]
                convert_json_to_dict(input_params)
                self._algorithm_input = get_pluggable_class(
                    PluggableType.INPUT, input_name).from_params(input_params)

        algo_params = copy.deepcopy(self._parser.get_sections())
        self._quantum_algorithm = get_pluggable_class(
            PluggableType.ALGORITHM,
            algo_name).init_params(algo_params, self._algorithm_input)
        random_seed = self._parser.get_section_property(
            JSONSchema.PROBLEM, 'random_seed')
        self._quantum_algorithm.random_seed = random_seed

        if isinstance(quantum_instance, QuantumInstance):
            self._quantum_instance = quantum_instance
            return

        backend = None
        if isinstance(quantum_instance, BaseBackend):
            backend = quantum_instance
        elif quantum_instance is not None:
            raise AquaError(
                'Invalid QuantumInstance or BaseBackend parameter {}.'.format(
                    quantum_instance))

        # setup backend
        backend_provider = self._parser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.PROVIDER)
        backend_name = self._parser.get_section_property(
            JSONSchema.BACKEND, JSONSchema.NAME)
        if backend_provider is not None and backend_name is not None:  # quantum algorithm
            backend_cfg = {
                k: v
                for k, v in self._parser.get_section(
                    JSONSchema.BACKEND).items()
                if k not in [JSONSchema.PROVIDER, JSONSchema.NAME]
            }
            # TODO, how to build the noise model from a dictionary?
            backend_cfg['seed_mapper'] = random_seed
            pass_manager = PassManager() if backend_cfg.pop(
                'skip_transpiler', False) else None
            if pass_manager is not None:
                backend_cfg['pass_manager'] = pass_manager

            if backend is None:
                backend = get_backend_from_provider(backend_provider,
                                                    backend_name)

            backend_cfg['backend'] = backend

            # overwrite the basis_gates and coupling_map
            basis_gates = backend_cfg.pop('basis_gates', None)
            if isinstance(basis_gates, str):
                basis_gates = basis_gates.split(',')

            coupling_map = backend_cfg.pop('coupling_map', None)
            if backend.configuration().simulator:
                if basis_gates is not None:
                    backend.configuration().basis_gates = basis_gates
                if coupling_map is not None:
                    backend.configuration().coupling_map = coupling_map
            else:
                logger.warning(
                    "Change basis_gates and coupling_map on a real device is disallowed."
                )

            shots = backend_cfg.pop('shots', 1024)
            seed = random_seed
            max_credits = backend_cfg.pop('max_credits', 10)
            memory = backend_cfg.pop('memory', False)
            run_config = RunConfig(shots=shots,
                                   max_credits=max_credits,
                                   memory=memory)
            if seed is not None:
                run_config.seed = seed
            backend_cfg['run_config'] = run_config

            backend_cfg[
                'skip_qobj_validation'] = self._parser.get_section_property(
                    JSONSchema.PROBLEM, 'skip_qobj_validation')
            use_caching = self._parser.get_section_property(
                JSONSchema.PROBLEM, 'circuit_caching')
            if use_caching:
                deepcopy_qobj = self._parser.get_section_property(
                    JSONSchema.PROBLEM, 'skip_qobj_deepcopy')
                cache_file = self._parser.get_section_property(
                    JSONSchema.PROBLEM, 'circuit_cache_file')
                backend_cfg['circuit_cache'] = CircuitCache(
                    skip_qobj_deepcopy=deepcopy_qobj, cache_file=cache_file)

            self._quantum_instance = QuantumInstance(**backend_cfg)

    def run(self, json_output=False):
        if self.quantum_algorithm is None:
            raise AquaError('Missing Quantum Algorithm.')

        self._result = self.quantum_algorithm.run(self.quantum_instance)
        return self.json_result if json_output else self.result

    @staticmethod
    def run_algorithm_to_json(params,
                              algo_input=None,
                              jsonfile='algorithm.json'):
        """
        Run algorithm as named in params.

        Using params and algo_input as input data
        and save the combined input as a json file. This json is self-contained and
        can later be used as a basis to call run_algorithm

        Args:
            params (dict): Dictionary of params for algo and dependent objects
            algo_input (AlgorithmInput): Main input data for algorithm. Optional, an algo may run entirely from params
            jsonfile (str): Name of file in which json should be saved

        Returns:
            Result dictionary containing the jsonfile name
        """
        _discover_on_demand()

        inputparser = InputParser(params)
        inputparser.parse()
        inputparser.validate_merge_defaults()

        algo_params = copy.deepcopy(inputparser.get_sections())

        if algo_input is not None:
            input_params = algo_input.to_params()
            convert_dict_to_json(input_params)
            algo_params['input'] = input_params
            algo_params['input']['name'] = algo_input.configuration['name']

        logger.debug('Result: {}'.format(
            json.dumps(algo_params, sort_keys=True, indent=4)))
        with open(jsonfile, 'w') as fp:
            json.dump(algo_params, fp, sort_keys=True, indent=4)

        logger.info("Algorithm input file saved: '{}'".format(jsonfile))

        return {'jsonfile': jsonfile}