Exemple #1
0
    def test_qaoa(self, w, p, m, solutions):
        self.log.debug('Testing {}-step QAOA with MaxCut on graph\n{}'.format(
            p, w))
        np.random.seed(0)

        backend = BasicAer.get_backend('statevector_simulator')
        optimizer = COBYLA()
        qubitOp, offset = max_cut.get_max_cut_qubitops(w)

        qaoa = QAOA(qubitOp, optimizer, p, operator_mode='matrix', mixer=m)
        quantum_instance = QuantumInstance(backend)

        result = qaoa.run(quantum_instance)
        x = max_cut.sample_most_likely(result['eigvecs'][0])
        graph_solution = max_cut.get_graph_solution(x)
        self.log.debug('energy:             {}'.format(result['energy']))
        self.log.debug('time:               {}'.format(result['eval_time']))
        self.log.debug('maxcut objective:   {}'.format(result['energy'] +
                                                       offset))
        self.log.debug('solution:           {}'.format(graph_solution))
        self.log.debug('solution objective: {}'.format(
            max_cut.max_cut_value(x, w)))
        self.assertIn(''.join([str(int(i)) for i in graph_solution]),
                      solutions)
        if quantum_instance.has_circuit_caching:
            self.assertLess(quantum_instance._circuit_cache.misses, 3)
Exemple #2
0
def get_qubit_op(num_qubits, seed=23412341234):
    G = nx.Graph()

    # """ HAVE DATA -- VIGO
    n = num_qubits
    SEED = seed
    np.random.seed(SEED % (2 ** 31 - 1))
    G = nx.dense_gnm_random_graph(n, n ** 2, seed=SEED)
    for (u, v, w) in G.edges(data=True):
        w['weight'] = np.random.rand() * 0.5 # 0.1

    np.random.seed(int(time.time()))

    w = np.zeros([n, n])
    for i in range(n):
        for j in range(n):
            temp = G.get_edge_data(i, j, default=0)
            if temp != 0:
                w[i, j] = temp['weight']
    # print(w)

    qubitOp, offset = max_cut.get_max_cut_qubitops(w)
    algo_input = EnergyInput(qubitOp)

    pos = nx.spring_layout(G)
    exact = ExactEigensolver(qubitOp).run()
    exact_energy = exact['energy']
    return qubitOp, exact_energy
Exemple #3
0
    def test_qaoa(self, w, p, m, solutions):
        os.environ.pop('QISKIT_AQUA_CIRCUIT_CACHE', None)
        self.log.debug('Testing {}-step QAOA with MaxCut on graph\n{}'.format(
            p, w))
        np.random.seed(0)

        backend = BasicAer.get_backend('statevector_simulator')
        optimizer = COBYLA()
        qubit_op, offset = max_cut.get_max_cut_qubitops(w)

        qaoa = QAOA(qubit_op, optimizer, p, mixer=m)
        # TODO: cache fails for QAOA since we construct the evolution circuit via instruction
        quantum_instance = QuantumInstance(backend, circuit_caching=False)

        result = qaoa.run(quantum_instance)
        x = max_cut.sample_most_likely(result['eigvecs'][0])
        graph_solution = max_cut.get_graph_solution(x)
        self.log.debug('energy:             {}'.format(result['energy']))
        self.log.debug('time:               {}'.format(result['eval_time']))
        self.log.debug('maxcut objective:   {}'.format(result['energy'] +
                                                       offset))
        self.log.debug('solution:           {}'.format(graph_solution))
        self.log.debug('solution objective: {}'.format(
            max_cut.max_cut_value(x, w)))
        self.assertIn(''.join([str(int(i)) for i in graph_solution]),
                      solutions)
        if quantum_instance.has_circuit_caching:
            self.assertLess(quantum_instance._circuit_cache.misses, 3)
    def set_adj_matrix(self, adj_matrix):
        maxcut_op, self.maxcut_shift = max_cut.get_max_cut_qubitops(adj_matrix)
        # print("maxcut_op: ", maxcut_op, ", maxcut_shift: ", maxcut_shift)

        # TODO: Find different approach of calculating and retrieving diagonal
        maxcut_op._paulis_to_matrix()
        self.eigenvalues = maxcut_op._dia_matrix

        self.calc_expectation_value()
        self.draw_expectation_grid()
Exemple #5
0
 def setUp(self):
     super().setUp()
     np.random.seed(8123179)
     self.w = max_cut.random_graph(4, edge_prob=0.5, weight_range=10)
     self.qubit_op, self.offset = max_cut.get_max_cut_qubitops(self.w)
     self.algo_input = EnergyInput(self.qubit_op)
# tuple is (i,j,weight) where (i,j) is the edge
G.add_weighted_edges_from(elist)
print(list(nx.connected_components(G)))
print(list(G.edges))
square_ring = list(G.edges)
print(square_ring)

w = np.zeros([n, n])
for i in range(n):
    for j in range(n):
        temp = G.get_edge_data(i, j, default=0)
        if temp != 0:
            w[i, j] = temp['weight']
print(w)

qubitOp, offset = max_cut.get_max_cut_qubitops(w)

algo_input = EnergyInput(qubitOp)

seed = 10598

spsa = SPSA(max_trials=300)
ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')
vqe = VQE(qubitOp, ry, spsa, 'matrix')

backend = BasicAer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend, seed=seed, seed_transpiler=seed)

result = vqe.run(quantum_instance)
"""declarative approach
algorithm_cfg = {
Exemple #7
0
def qiskit_maxcut():
    n = 4  # Number of nodes in graph
    G = nx.Graph()
    G.add_nodes_from(np.arange(0, n, 1))
    elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)]
    # tuple is (i,j,weight) where (i,j) is the edge
    G.add_weighted_edges_from(elist)

    colors = ['r' for node in G.nodes()]
    pos = nx.spring_layout(G)
    default_axes = plt.axes(frameon=True)
    nx.draw_networkx(G,
                     node_color=colors,
                     node_size=600,
                     alpha=.8,
                     ax=default_axes,
                     pos=pos)
    w = np.zeros([n, n])
    for i in range(n):
        for j in range(n):
            temp = G.get_edge_data(i, j, default=0)
            if temp != 0:
                w[i, j] = temp['weight']
    # print(w)  # weight matrix. i.e. distances. 0 indicates no path.

    #####
    # Brute force solution
    # best_cost_brute = 0
    # for b in range(2 ** n):
    #     x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))]
    #     cost = 0
    #     for i in range(n):
    #         for j in range(n):
    #             cost = cost + w[i, j] * x[i] * (1 - x[j])
    #     if best_cost_brute < cost:
    #         best_cost_brute = cost
    #         xbest_brute = x
    #     print('case = ' + str(x) + ' cost = ' + str(cost))
    #
    # colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)]
    # nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)
    # print('\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute))
    # End brute force solution
    #####

    #####
    # Eigensolver solution
    # qubitOp, offset = max_cut.get_max_cut_qubitops(w)
    # algo_input = EnergyInput(qubitOp)
    #
    # # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector
    # ee = ExactEigensolver(qubitOp, k=1)
    # result = ee.run()
    #
    # """
    # algorithm_cfg = {
    #     'name': 'ExactEigensolver',
    # }
    #
    # params = {
    #     'problem': {'name': 'ising'},
    #     'algorithm': algorithm_cfg
    # }
    # result = run_algorithm(params,algo_input)
    # """
    # x = max_cut.sample_most_likely(result['eigvecs'][0])
    # print('energy:', result['energy'])
    # print('maxcut objective:', result['energy'] + offset)
    # print('solution:', max_cut.get_graph_solution(x))
    # print('solution objective:', max_cut.max_cut_value(x, w))
    #
    # colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]
    # nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)
    # End eigensolver solution
    #####

    # run quantum algorithm with shots
    qubitOp, offset = max_cut.get_max_cut_qubitops(w)
    algo_input = EnergyInput(qubitOp)
    seed = 10598

    spsa = SPSA(max_trials=300)
    ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')
    vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')

    backend = Aer.get_backend('qasm_simulator')
    quantum_instance = QuantumInstance(backend=backend, shots=1024, seed=seed)

    result = vqe.run(quantum_instance)
    """declarative approach, update the param from the previous cell.
    params['algorithm']['operator_mode'] = 'grouped_paulis'
    params['backend']['name'] = 'qasm_simulator'
    params['backend']['shots'] = 1024
    result = run_algorithm(params, algo_input)
    """

    x = max_cut.sample_most_likely(result['eigvecs'][0])
    print('energy:', result['energy'])
    print('time:', result['eval_time'])
    print('maxcut objective:', result['energy'] + offset)
    print('solution:', max_cut.get_graph_solution(x))
    print('solution objective:', max_cut.max_cut_value(x, w))
    plot_histogram(result['eigvecs'][0])

    colors = [
        'r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)
    ]
    nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)