Exemple #1
0
    def test_qaoa(self, w, p, m, solutions):
        self.log.debug('Testing {}-step QAOA with MaxCut on graph\n{}'.format(
            p, w))
        np.random.seed(0)

        backend = BasicAer.get_backend('statevector_simulator')
        optimizer = COBYLA()
        qubitOp, offset = max_cut.get_max_cut_qubitops(w)

        qaoa = QAOA(qubitOp, optimizer, p, operator_mode='matrix', mixer=m)
        quantum_instance = QuantumInstance(backend)

        result = qaoa.run(quantum_instance)
        x = max_cut.sample_most_likely(result['eigvecs'][0])
        graph_solution = max_cut.get_graph_solution(x)
        self.log.debug('energy:             {}'.format(result['energy']))
        self.log.debug('time:               {}'.format(result['eval_time']))
        self.log.debug('maxcut objective:   {}'.format(result['energy'] +
                                                       offset))
        self.log.debug('solution:           {}'.format(graph_solution))
        self.log.debug('solution objective: {}'.format(
            max_cut.max_cut_value(x, w)))
        self.assertIn(''.join([str(int(i)) for i in graph_solution]),
                      solutions)
        if quantum_instance.has_circuit_caching:
            self.assertLess(quantum_instance._circuit_cache.misses, 3)
Exemple #2
0
def decode_result(result, offset=0):
    x = max_cut.sample_most_likely(result['eigvecs'][0])
    print('energy:', result['energy'])
    print('max-cut objective:', result['energy'] + offset)
    print('solution:', max_cut.get_graph_solution(x))
    print('solution objective:', max_cut.max_cut_value(x, w))
    return " "
Exemple #3
0
    def test_qaoa(self, w, p, m, solutions):
        os.environ.pop('QISKIT_AQUA_CIRCUIT_CACHE', None)
        self.log.debug('Testing {}-step QAOA with MaxCut on graph\n{}'.format(
            p, w))
        np.random.seed(0)

        backend = BasicAer.get_backend('statevector_simulator')
        optimizer = COBYLA()
        qubit_op, offset = max_cut.get_max_cut_qubitops(w)

        qaoa = QAOA(qubit_op, optimizer, p, mixer=m)
        # TODO: cache fails for QAOA since we construct the evolution circuit via instruction
        quantum_instance = QuantumInstance(backend, circuit_caching=False)

        result = qaoa.run(quantum_instance)
        x = max_cut.sample_most_likely(result['eigvecs'][0])
        graph_solution = max_cut.get_graph_solution(x)
        self.log.debug('energy:             {}'.format(result['energy']))
        self.log.debug('time:               {}'.format(result['eval_time']))
        self.log.debug('maxcut objective:   {}'.format(result['energy'] +
                                                       offset))
        self.log.debug('solution:           {}'.format(graph_solution))
        self.log.debug('solution objective: {}'.format(
            max_cut.max_cut_value(x, w)))
        self.assertIn(''.join([str(int(i)) for i in graph_solution]),
                      solutions)
        if quantum_instance.has_circuit_caching:
            self.assertLess(quantum_instance._circuit_cache.misses, 3)
                pauli_list.append([value, Pauli(zp, xp)])
    return WeightedPauliOperator(paulis=pauli_list), constant


isingdict ={(0,1):0.5,(1,2):0.5,(2,3):0.5,(3,4):0.5,():-2.0}
qubitOp, shift  = get_ising_qubitops(isingdict,5)

provider = OpenSuperQ_Provider()
backend = provider.get_backend('OSQ_ETH7_rev1')

optimizer = POWELL()

qaoa = QAOA(qubitOp, optimizer, p=1, operator_mode='paulis',initial_point=[0.0, 0.0])
quantum_instance = QuantumInstance(backend)

circ = qaoa.construct_circuit(parameter=[2.0, 1.0],circuit_name_prefix='Hello',statevector_mode=True)
latex = circ[0].draw(output='latex_source')

result = qaoa.run(quantum_instance)

print('shift: ', shift)
print('name: ', result.keys())
print([str(key) + " " + str(value) for key, value in result.items()])

plot_histogram(result['eigvecs'], figsize = (18,5))
x = max_cut.sample_most_likely(result['eigvecs'][0])
graph_solution = max_cut.get_graph_solution(x)
#qaoa._circuit.draw(output='mpl')

print('Hello')
Exemple #5
0
def qiskit_maxcut():
    n = 4  # Number of nodes in graph
    G = nx.Graph()
    G.add_nodes_from(np.arange(0, n, 1))
    elist = [(0, 1, 1.0), (0, 2, 1.0), (0, 3, 1.0), (1, 2, 1.0), (2, 3, 1.0)]
    # tuple is (i,j,weight) where (i,j) is the edge
    G.add_weighted_edges_from(elist)

    colors = ['r' for node in G.nodes()]
    pos = nx.spring_layout(G)
    default_axes = plt.axes(frameon=True)
    nx.draw_networkx(G,
                     node_color=colors,
                     node_size=600,
                     alpha=.8,
                     ax=default_axes,
                     pos=pos)
    w = np.zeros([n, n])
    for i in range(n):
        for j in range(n):
            temp = G.get_edge_data(i, j, default=0)
            if temp != 0:
                w[i, j] = temp['weight']
    # print(w)  # weight matrix. i.e. distances. 0 indicates no path.

    #####
    # Brute force solution
    # best_cost_brute = 0
    # for b in range(2 ** n):
    #     x = [int(t) for t in reversed(list(bin(b)[2:].zfill(n)))]
    #     cost = 0
    #     for i in range(n):
    #         for j in range(n):
    #             cost = cost + w[i, j] * x[i] * (1 - x[j])
    #     if best_cost_brute < cost:
    #         best_cost_brute = cost
    #         xbest_brute = x
    #     print('case = ' + str(x) + ' cost = ' + str(cost))
    #
    # colors = ['r' if xbest_brute[i] == 0 else 'b' for i in range(n)]
    # nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)
    # print('\nBest solution = ' + str(xbest_brute) + ' cost = ' + str(best_cost_brute))
    # End brute force solution
    #####

    #####
    # Eigensolver solution
    # qubitOp, offset = max_cut.get_max_cut_qubitops(w)
    # algo_input = EnergyInput(qubitOp)
    #
    # # Making the Hamiltonian in its full form and getting the lowest eigenvalue and eigenvector
    # ee = ExactEigensolver(qubitOp, k=1)
    # result = ee.run()
    #
    # """
    # algorithm_cfg = {
    #     'name': 'ExactEigensolver',
    # }
    #
    # params = {
    #     'problem': {'name': 'ising'},
    #     'algorithm': algorithm_cfg
    # }
    # result = run_algorithm(params,algo_input)
    # """
    # x = max_cut.sample_most_likely(result['eigvecs'][0])
    # print('energy:', result['energy'])
    # print('maxcut objective:', result['energy'] + offset)
    # print('solution:', max_cut.get_graph_solution(x))
    # print('solution objective:', max_cut.max_cut_value(x, w))
    #
    # colors = ['r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)]
    # nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)
    # End eigensolver solution
    #####

    # run quantum algorithm with shots
    qubitOp, offset = max_cut.get_max_cut_qubitops(w)
    algo_input = EnergyInput(qubitOp)
    seed = 10598

    spsa = SPSA(max_trials=300)
    ry = RY(qubitOp.num_qubits, depth=5, entanglement='linear')
    vqe = VQE(qubitOp, ry, spsa, 'grouped_paulis')

    backend = Aer.get_backend('qasm_simulator')
    quantum_instance = QuantumInstance(backend=backend, shots=1024, seed=seed)

    result = vqe.run(quantum_instance)
    """declarative approach, update the param from the previous cell.
    params['algorithm']['operator_mode'] = 'grouped_paulis'
    params['backend']['name'] = 'qasm_simulator'
    params['backend']['shots'] = 1024
    result = run_algorithm(params, algo_input)
    """

    x = max_cut.sample_most_likely(result['eigvecs'][0])
    print('energy:', result['energy'])
    print('time:', result['eval_time'])
    print('maxcut objective:', result['energy'] + offset)
    print('solution:', max_cut.get_graph_solution(x))
    print('solution objective:', max_cut.max_cut_value(x, w))
    plot_histogram(result['eigvecs'][0])

    colors = [
        'r' if max_cut.get_graph_solution(x)[i] == 0 else 'b' for i in range(n)
    ]
    nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, pos=pos)
Exemple #6
0
def optimize_f(precision, coefs_param, beta):

    coefs = coefs_param.copy()
    coefs.append(0)
    coefs_restr = (1, 1, 1)

    lista_vars = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
    mdl = Model()
    variables = []
    for num_var in range(len(coefs)):
        tmp = {
            i: mdl.binary_var(name=(lista_vars[num_var] + '_{0}').format(i))
            for i in range(precision)
        }
        variables.append(tmp)
    # x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(precision)}
    # y = {i: mdl.binary_var(name='y_{0}'.format(i)) for i in range(precision)}
    # z = {i: mdl.binary_var(name='z_{0}'.format(i)) for i in range(precision)}
    #print(variables)
    # Object function
    # my_func = mdl.sum(coefs[0]*(2**i)*x[i]+coefs[1]*(2**i)*y[i]+(2**i)*coefs[2]*z[i] for i in range(precision))

    # my_func = mdl.sum(coefs[j]*(2**i)*vars[j][i] for j in range(len(coefs)) for i in range(precision))

    my_func = mdl.sum(coefs[j] * (2**i) * variables[j][i]
                      for j in range(len(coefs)) for i in range(precision))

    # (x[i] for i in range(precision)), (y[i] for i in range(precision)), (z[i] for i in range(precision)
    # tmp = {0:{'var':x,'coef':coefs_restr[0]},
    #       1:{'var':y,'coef':coefs_restr[1]},
    #       2:{'var':z,'coef':coefs_restr[2]}}

    mdl.maximize(my_func)

    inverted_beta = dameInversoBinario(beta, precision, len(coefs))

    # mdl.add_constraint(mdl.sum( tmp[v]['var'][i]*(2**i)*tmp[v]['coef'] for v in range(len(coefs)) for i in range(precision)) == beta)
    # mdl.add_constraint(mdl.sum( x[0] + x[1]*(2) + x[2]*(4) + y[0] + y[1]*(2) + y[2]*(4) + z[0] + z[1]*(2) + z[2]*(4) ) == inverted_beta)
    # mdl.add_constraint(mdl.sum( variables[0][0] + variables[0][1]*(2) + variables[0][2]*(4) + variables[1][0] + variables[1][1]
    # *(2) + variables[1][2]*(4) + variables[2][0] + variables[2][1]*(2) + variables[2][2]*(4) ) == inverted_beta)

    mdl.add_constraint(
        mdl.sum(variables[v][i] * 2**i for v in range(len(coefs))
                for i in range(precision)) == inverted_beta)

    # mdl.add_constraint(mdl.sum( -x[0] - x[1]*(2) - x[2]*(4) - y[0] - y[1]*(2) - y[2]*(4) - z[0] - z[1]*(2) - z[2]*(4) ) == 6)

    # mdl.add_constraint(mdl.sum( -1*tmp[v]['var'][i]*(2**i)*tmp[v]['coef'] for v in range(len(coefs)) for i in range(precision)) == -beta)

    qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)

    #print(qubitOp_docplex)

    # algo_input = EnergyInput(qubitOp_docplex)
    # print(algo_input.)

    # ee = VQE(qubitOp_docplex)
    # ee.run()
    ee = ExactEigensolver(qubitOp_docplex, k=1)
    result_ee = ee.run()
    x_ee = max_cut.sample_most_likely(result_ee['eigvecs'][0])
    print('solution:', max_cut.get_graph_solution(x_ee))
    solucion_ee = max_cut.get_graph_solution(x_ee)
    return (solucion_ee, None)
    """
    algorithm_cfg = {
        'name': 'ExactEigensolver',
    }

    params = {
        'problem': {'name': 'ising'},
        'algorithm': algorithm_cfg
    }
    result = run_algorithm(params,algo_input)
    """
    # x = max_cut.sample_most_likely(result['eigvecs'][0])
    # print('energy:', result['energy'])
    # print('max-cut objective:', result['energy'] + offset_docplex)
    # print('solution:', max_cut.get_graph_solution(x))
    # print('solution objective:', max_cut.max_cut_value(x, w))

    seed = 10598

    # change optimizer(spsa), change ry (riyc)
    spsa = SPSA(max_trials=300)
    ry = RY(qubitOp_docplex.num_qubits, depth=6, entanglement='linear')
    vqe = VQE(qubitOp_docplex, ry, spsa, 'matrix')

    backend = BasicAer.get_backend('statevector_simulator')
    quantum_instance = QuantumInstance(backend,
                                       seed=seed,
                                       seed_transpiler=seed)

    result = vqe.run(quantum_instance)
    x = max_cut.sample_most_likely(result['eigvecs'][0])
    print('solution:', max_cut.get_graph_solution(x))
    return (solucion_ee, max_cut.get_graph_solution(x))