def feature_map():
    # BUILD FEATURE MAP HERE - START

    # import required qiskit libraries if additional libraries are required

    # build the feature map

    def self_product(x: np.ndarray) -> float:
        """
      Define a function map from R^n to R.

      Args:
        x: data

      Returns:
        float: the mapped value
      """
        coeff = x[0] if len(x) == 1 else \
          functools.reduce(lambda m, n:np.square( m * n), np.pi - x)
        return coeff

    feature_dim = 5  # equal to the dimension of the data

    feature_map = ZFeatureMap(feature_dimension=feature_dim,
                              data_map_func=self_product,
                              reps=2)
    feature_map.draw()
    # BUILD FEATURE MAP HERE - END

    #return the feature map which is either a FeatureMap or QuantumCircuit object
    return feature_map  # the write_and_run function writes the content in this cell into the file "variational_circuit.py"
Exemple #2
0
    def test_parameter_prefix(self):
        """Test the Parameter prefix"""
        encoding_pauli = PauliFeatureMap(feature_dimension=2,
                                         reps=2,
                                         paulis=["ZY"],
                                         parameter_prefix="p")
        encoding_z = ZFeatureMap(feature_dimension=2,
                                 reps=2,
                                 parameter_prefix="q")
        encoding_zz = ZZFeatureMap(feature_dimension=2,
                                   reps=2,
                                   parameter_prefix="r")
        x = ParameterVector("x", 2)
        y = Parameter("y")

        self.assertEqual(
            str(encoding_pauli.parameters),
            "ParameterView([ParameterVectorElement(p[0]), ParameterVectorElement(p[1])])",
        )
        self.assertEqual(
            str(encoding_z.parameters),
            "ParameterView([ParameterVectorElement(q[0]), ParameterVectorElement(q[1])])",
        )
        self.assertEqual(
            str(encoding_zz.parameters),
            "ParameterView([ParameterVectorElement(r[0]), ParameterVectorElement(r[1])])",
        )

        encoding_pauli_param_x = encoding_pauli.assign_parameters(x)
        encoding_z_param_x = encoding_z.assign_parameters(x)
        encoding_zz_param_x = encoding_zz.assign_parameters(x)

        self.assertEqual(
            str(encoding_pauli_param_x.parameters),
            "ParameterView([ParameterVectorElement(x[0]), ParameterVectorElement(x[1])])",
        )
        self.assertEqual(
            str(encoding_z_param_x.parameters),
            "ParameterView([ParameterVectorElement(x[0]), ParameterVectorElement(x[1])])",
        )
        self.assertEqual(
            str(encoding_zz_param_x.parameters),
            "ParameterView([ParameterVectorElement(x[0]), ParameterVectorElement(x[1])])",
        )

        encoding_pauli_param_y = encoding_pauli.assign_parameters({1, y})
        encoding_z_param_y = encoding_z.assign_parameters({1, y})
        encoding_zz_param_y = encoding_zz.assign_parameters({1, y})

        self.assertEqual(str(encoding_pauli_param_y.parameters),
                         "ParameterView([Parameter(y)])")
        self.assertEqual(str(encoding_z_param_y.parameters),
                         "ParameterView([Parameter(y)])")
        self.assertEqual(str(encoding_zz_param_y.parameters),
                         "ParameterView([Parameter(y)])")
def feature_map(): 
    # BUILD FEATURE MAP HERE - START
    
    # import required qiskit libraries if additional libraries are required
    
    # build the feature map
    feature_dim = 3     # equal to the dimension of the data

    feature_map = ZFeatureMap(feature_dimension=feature_dim, reps=4)
    feature_map.draw()
    # BUILD FEATURE MAP HERE - END
    
    #return the feature map which is either a FeatureMap or QuantumCircuit object
    return feature_map
Exemple #4
0
    def setUp(self):
        super().setUp()

        algorithm_globals.random_seed = 10598

        self.statevector_simulator = QuantumInstance(
            BasicAer.get_backend("statevector_simulator"),
            shots=1,
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )

        # number of qubits is equal to the number of features
        self.q = 2
        # number of steps performed during the training procedure
        self.tau = 100

        self.feature_map = ZFeatureMap(feature_dimension=self.q, reps=1)

        sample, label = make_blobs(n_samples=20,
                                   n_features=2,
                                   centers=2,
                                   random_state=3,
                                   shuffle=True)
        sample = MinMaxScaler(feature_range=(0, np.pi)).fit_transform(sample)

        # split into train and test set
        self.sample_train = sample[:15]
        self.label_train = label[:15]
        self.sample_test = sample[15:]
        self.label_test = label[15:]

        # The same for a 4-dimensional example
        # number of qubits is equal to the number of features
        self.q_4d = 4
        self.feature_map_4d = ZFeatureMap(feature_dimension=self.q_4d, reps=1)

        sample_4d, label_4d = make_blobs(n_samples=20,
                                         n_features=self.q_4d,
                                         centers=2,
                                         random_state=3,
                                         shuffle=True)
        sample_4d = MinMaxScaler(
            feature_range=(0, np.pi)).fit_transform(sample_4d)

        # split into train and test set
        self.sample_train_4d = sample_4d[:15]
        self.label_train_4d = label_4d[:15]
        self.sample_test_4d = sample_4d[15:]
        self.label_test_4d = label_4d[15:]
Exemple #5
0
def feature_map():
    # BUILD FEATURE MAP HERE - START

    # import required qiskit libraries if additional libraries are required

    # build the feature map

    feature_dim = 3  # equal to the dimension of the data

    feature_map = ZFeatureMap(feature_dimension=feature_dim, reps=2)
    feature_map.draw()
    # BUILD FEATURE MAP HERE - END

    #return the feature map which is either a FeatureMap or QuantumCircuit object
    return feature_map  # the write_and_run function writes the content in this cell into the file "variational_circuit.py"
    def test_partial_large_circuit(self, method):
        np.random.seed(21)

        featuremap = ZFeatureMap(2, reps=1)
        featuremap.assign_parameters(np.random.random(
            featuremap.num_parameters), inplace=True)

        ansatz = RealAmplitudes(2, reps=1)
        params = ansatz.ordered_parameters[:]
        values = np.random.random(ansatz.num_parameters)
        init = Statevector.from_int(1, dims=(2, 2))

        circuit = featuremap.compose(ansatz)

        grad = StateGradient(X ^ X, circuit, init, params)
        grads = getattr(grad, method)(dict(zip(params, values)))
        ref = [-0.7700884147948044, 0.011116605029003569, -0.6889501710944109, 
               -0.07972088641561373]

        np.testing.assert_array_almost_equal(grads, ref)
Exemple #7
0
    def test_first_order_circuit(self):
        """Test a first order expansion circuit."""
        times = [0.2, 1, np.pi, -1.2]
        encoding = ZFeatureMap(4, reps=3).assign_parameters(times)

        ref = QuantumCircuit(4)
        for _ in range(3):
            ref.h([0, 1, 2, 3])
            for i in range(4):
                ref.p(2 * times[i], i)

        self.assertTrue(Operator(encoding).equiv(ref))
Exemple #8
0
    def _build(self):
        # wipe current state
        self._data = []
        self._parameter_table = ParameterTable()

        # get UCCSD circuit
        featmap = ZFeatureMap(self.num_qubits, reps=self.reps)
        ansatz = RealAmplitudes(self.num_qubits,
                                reps=self.reps,
                                entanglement='circular')

        # store the parameters in a list for assigning them
        self._params = ansatz.ordered_parameters

        # set the data circuit with some input data
        featmap.assign_parameters(np.random.random(featmap.num_parameters),
                                  inplace=True)

        # combine the circuit
        self.compose(featmap, inplace=True)
        self.compose(ansatz, inplace=True)
Exemple #9
0
    def test_first_order_circuit(self):
        """Test a first order expansion circuit."""
        times = [0.2, 1, np.pi, -1.2]
        encoding = ZFeatureMap(4, reps=3).assign_parameters(times)

        #      ┌───┐ ┌────────┐┌───┐ ┌────────┐┌───┐ ┌────────┐
        # q_0: ┤ H ├─┤ P(0.4) ├┤ H ├─┤ P(0.4) ├┤ H ├─┤ P(0.4) ├
        #      ├───┤ └┬──────┬┘├───┤ └┬──────┬┘├───┤ └┬──────┬┘
        # q_1: ┤ H ├──┤ P(2) ├─┤ H ├──┤ P(2) ├─┤ H ├──┤ P(2) ├─
        #      ├───┤ ┌┴──────┤ ├───┤ ┌┴──────┤ ├───┤ ┌┴──────┤
        # q_2: ┤ H ├─┤ P(2π) ├─┤ H ├─┤ P(2π) ├─┤ H ├─┤ P(2π) ├─
        #      ├───┤┌┴───────┴┐├───┤┌┴───────┴┐├───┤┌┴───────┴┐
        # q_3: ┤ H ├┤ P(-2.4) ├┤ H ├┤ P(-2.4) ├┤ H ├┤ P(-2.4) ├
        #      └───┘└─────────┘└───┘└─────────┘└───┘└─────────┘
        ref = QuantumCircuit(4)
        for _ in range(3):
            ref.h([0, 1, 2, 3])
            for i in range(4):
                ref.p(2 * times[i], i)

        self.assertTrue(Operator(encoding).equiv(ref))
Exemple #10
0
# Generate synthetic training and test sets from the SecondOrderExpansion quantum feature map
feature_dim = 2
sample_Total, training_dataset, test_dataset, class_labels = ad_hoc_data(
    training_size=20, test_size=10, n=feature_dim, gap=0.3, plot_data=False)

# Using the statevector simulator
backend = BasicAer.get_backend('statevector_simulator')
random_seed = 10598

quantum_instance = QuantumInstance(backend,
                                   seed_simulator=random_seed,
                                   seed_transpiler=random_seed)

# Generate the feature map
feature_map = ZFeatureMap(feature_dimension=feature_dim, reps=2)

# Run the Quantum Kernel Estimator and classify the test data
qsvm = QSVM(feature_map=feature_map,
            training_dataset=training_dataset,
            test_dataset=test_dataset)

result = qsvm.run(quantum_instance)
print("testing success ratio: ", result['testing_accuracy'])

feature_map = ZZFeatureMap(feature_dimension=feature_dim, reps=2)

qsvm = QSVM(feature_map=feature_map,
            training_dataset=training_dataset,
            test_dataset=test_dataset)
Exemple #11
0
import numpy as np

# this code generates the data for the easy quantum models' fisher information eigenvalue distribution plot \
# in the Supplementary Information figure

# Global variables
n = [
    1000, 2000, 8000, 10000, 40000, 60000, 100000, 150000, 200000, 500000,
    1000000, 10000000, 10000000000, 10000000000000
]
blocks = 9
num_inputs = 100
num_thetas = 100
###################################################################################
num_qubits = 6
fm = ZFeatureMap(feature_dimension=num_qubits, reps=1)
circ = RealAmplitudes(num_qubits, reps=blocks)
qnet = QuantumNeuralNetwork(var_form=circ, feature_map=fm)
ed = EffectiveDimension(qnet, num_thetas=num_thetas, num_inputs=num_inputs)
f, trace = ed.get_fhat()
effdim = ed.eff_dim(f, n)
np.save("6qubits_9layer_f_hats_easy.npy", f)
####################################################################################

num_qubits = 8
fm = ZFeatureMap(feature_dimension=num_qubits, reps=1)
circ = RealAmplitudes(num_qubits, reps=blocks)
qnet = QuantumNeuralNetwork(var_form=circ, feature_map=fm)
ed = EffectiveDimension(qnet, num_thetas=num_thetas, num_inputs=num_inputs)
f, trace = ed.get_fhat()
effdim = ed.eff_dim(f, n)
import numpy as np

TOKEN = 'insert token here'
IBMQ.save_account(TOKEN, overwrite=True)
provider = IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q-internal', group='deployed', project='default')
backend_name = 'ibmq_montreal'
backend_ibmq = provider.get_backend(backend_name)
properties = backend_ibmq.properties()
coupling_map = backend_ibmq.configuration().coupling_map
noise_model = NoiseModel.from_backend(properties)
# layout = [0, 1, 2, 3]
layout = [3, 5, 8, 11, 14, 13, 12, 10] # might need to change
qi_ibmq_noise_model = QuantumInstance(backend=Aer.get_backend('qasm_simulator'),
                                       noise_model=noise_model, optimization_level=0, shots=8000,
                                       seed_transpiler=2, initial_layout=layout)
qi = qi_ibmq_noise_model
compile_config = {'initial_layout': layout,
                  'seed_transpiler': 2,
                  'optimization_level': 3
                  }
n = [1000, 2000, 8000, 10000, 40000, 60000, 100000, 150000, 200000, 500000, 1000000, 10000000, 10000000000, 10000000000000]
qubits = 8
fm = ZFeatureMap(qubits, reps=1)
varform = RealAmplitudes(qubits, reps=9, entanglement='full')
qnet = QuantumNeuralNetwork(fm, varform)
ed = EffectiveDimension(qnet, 100, 100)
fhat, _ = ed.get_fhat()
effdim = ed.eff_dim(fhat, n)
np.save('8qubits_fhats_noise_linearZ_full.npy', fhat)
np.save('8qubits_effective_dimension_noise_linearZ_full.npy', effdim)
Exemple #13
0
from sklearn import preprocessing
import numpy as np
from qiskit.quantum_info import Statevector
from functions_fr import *

# This code trains a fixed easy quantum model 100 times and computes the average Fisher-Rao norm which is equal to \
# W^T*F*W where
# trained parameters = W and F = Fisher information

iris = datasets.load_iris()
x = preprocessing.normalize(iris.data)
iris_x = x[:100]
n = 4
blocks = 1
sv = Statevector.from_label('0' * n)
feature_map = ZFeatureMap(n, reps=1)
var_form = RealAmplitudes(n, reps=blocks)
circuit = feature_map.combine(var_form)
d = circuit.num_parameters
effdims = []
frnorms = []
nrange = [100000000]
# randomly initialize the parameters
for i in range(100):
    file = 'opt_params_easy_%d.npy' % i
    opt_params_one = np.load(file)
    opt_params = np.tile(opt_params_one, (100, 1))
    x_train = iris_x
    cnet = QuantumNeuralNetwork(feature_map=feature_map, var_form=var_form)
    ed = EffectiveDimension(cnet, x_train)
    f = ed.get_fhat()
Exemple #14
0
    def setUp(self):
        super().setUp()

        algorithm_globals.random_seed = 1234
        qi_sv = QuantumInstance(
            Aer.get_backend("aer_simulator_statevector"),
            seed_simulator=algorithm_globals.random_seed,
            seed_transpiler=algorithm_globals.random_seed,
        )

        # set up quantum neural networks
        num_qubits = 3
        feature_map = ZFeatureMap(feature_dimension=num_qubits, reps=1)
        ansatz = RealAmplitudes(num_qubits, reps=1)

        # CircuitQNNs
        qc = QuantumCircuit(num_qubits)
        qc.append(feature_map, range(num_qubits))
        qc.append(ansatz, range(num_qubits))

        def parity(x):
            return f"{x:b}".count("1") % 2

        circuit_qnn_1 = CircuitQNN(
            qc,
            input_params=feature_map.parameters,
            weight_params=ansatz.parameters,
            interpret=parity,
            output_shape=2,
            sparse=False,
            quantum_instance=qi_sv,
        )

        # qnn2 for checking result without parity
        circuit_qnn_2 = CircuitQNN(
            qc,
            input_params=feature_map.parameters,
            weight_params=ansatz.parameters,
            sparse=False,
            quantum_instance=qi_sv,
        )

        # OpflowQNN
        observable = PauliSumOp.from_list([("Z" * num_qubits, 1)])
        opflow_qnn = TwoLayerQNN(
            num_qubits,
            feature_map=feature_map,
            ansatz=ansatz,
            observable=observable,
            quantum_instance=qi_sv,
        )

        self.qnns = {
            "circuit1": circuit_qnn_1,
            "circuit2": circuit_qnn_2,
            "opflow": opflow_qnn
        }

        # define sample numbers
        self.n_list = [
            5000, 8000, 10000, 40000, 60000, 100000, 150000, 200000, 500000,
            1000000
        ]
        self.n = 5000