def _circuit_u1x(theta, phi, lam, simplify=True, atol=DEFAULT_ATOL):
     # Shift theta and phi so decomposition is
     # U1(phi).X90.U1(theta).X90.U1(lam)
     theta += np.pi
     phi += np.pi
     # Check for decomposition into minimimal number required X90 pulses
     if simplify and np.isclose(abs(theta), np.pi, atol=atol):
         # Zero X90 gate decomposition
         circuit = QuantumCircuit(1)
         circuit.append(U1Gate(lam + phi + theta), [0])
         return circuit
     if simplify and np.isclose(abs(theta), np.pi / 2, atol=atol):
         # Single X90 gate decomposition
         circuit = QuantumCircuit(1)
         circuit.append(U1Gate(lam + theta), [0])
         circuit.append(RXGate(np.pi / 2), [0])
         circuit.append(U1Gate(phi + theta), [0])
         return circuit
     # General two-X90 gate decomposition
     circuit = QuantumCircuit(1)
     circuit.append(U1Gate(lam), [0])
     circuit.append(RXGate(np.pi / 2), [0])
     circuit.append(U1Gate(theta), [0])
     circuit.append(RXGate(np.pi / 2), [0])
     circuit.append(U1Gate(phi), [0])
     return circuit
Exemple #2
0
 def _circuit_xyx(theta, phi, lam, simplify=True, atol=DEFAULT_ATOL):
     circuit = QuantumCircuit(1)
     if simplify and np.isclose(theta, 0.0, atol=atol):
         circuit.append(RXGate(phi + lam), [0])
         return circuit
     if not simplify or not np.isclose(lam, 0.0, atol=atol):
         circuit.append(RXGate(lam), [0])
     if not simplify or not np.isclose(theta, 0.0, atol=atol):
         circuit.append(RYGate(theta), [0])
     if not simplify or not np.isclose(phi, 0.0, atol=atol):
         circuit.append(RXGate(phi), [0])
     return circuit
    def test_multi_controlled_rotation_gate_matrices(self, num_controls,
                                                     base_gate_name,
                                                     use_basis_gates):
        """Test the multi controlled rotation gates without ancillas.

        Based on the test moved here from Aqua:
        https://github.com/Qiskit/qiskit-aqua/blob/769ca8f/test/aqua/test_mcr.py
        """
        q_controls = QuantumRegister(num_controls)
        q_target = QuantumRegister(1)

        # iterate over all possible combinations of control qubits
        for ctrl_state in range(2**num_controls):
            bitstr = bin(ctrl_state)[2:].zfill(num_controls)[::-1]
            theta = 0.871236 * pi
            qc = QuantumCircuit(q_controls, q_target)
            for idx, bit in enumerate(bitstr):
                if bit == '0':
                    qc.x(q_controls[idx])

            # call mcrx/mcry/mcrz
            if base_gate_name == 'y':
                qc.mcry(theta,
                        q_controls,
                        q_target[0],
                        None,
                        mode='noancilla',
                        use_basis_gates=use_basis_gates)
            else:  # case 'x' or 'z' only support the noancilla mode and do not have this keyword
                getattr(qc, 'mcr' + base_gate_name)(
                    theta,
                    q_controls,
                    q_target[0],
                    use_basis_gates=use_basis_gates)

            for idx, bit in enumerate(bitstr):
                if bit == '0':
                    qc.x(q_controls[idx])

            backend = BasicAer.get_backend('unitary_simulator')
            simulated = execute(qc, backend).result().get_unitary(qc)

            if base_gate_name == 'x':
                rot_mat = RXGate(theta).to_matrix()
            elif base_gate_name == 'y':
                rot_mat = RYGate(theta).to_matrix()
            else:  # case 'z'
                rot_mat = U1Gate(theta).to_matrix()

            expected = _compute_control_matrix(rot_mat,
                                               num_controls,
                                               ctrl_state=ctrl_state)
            with self.subTest(msg='control state = {}'.format(ctrl_state)):
                self.assertTrue(matrix_equal(simulated, expected))
class TestParameterCtrlState(QiskitTestCase):
    """Test gate equality with ctrl_state parameter."""
    @data((RXGate(0.5), CRXGate(0.5)), (RYGate(0.5), CRYGate(0.5)),
          (RZGate(0.5), CRZGate(0.5)), (XGate(), CXGate()),
          (YGate(), CYGate()), (ZGate(), CZGate()),
          (U1Gate(0.5), CU1Gate(0.5)), (SwapGate(), CSwapGate()),
          (HGate(), CHGate()), (U3Gate(0.1, 0.2, 0.3), CU3Gate(0.1, 0.2, 0.3)))
    @unpack
    def test_ctrl_state_one(self, gate, controlled_gate):
        """Test controlled gates with ctrl_state
        See https://github.com/Qiskit/qiskit-terra/pull/4025
        """
        self.assertEqual(gate.control(1, ctrl_state='1'), controlled_gate)
Exemple #5
0
 def _circuit_u1x(theta, phi, lam, simplify=True, atol=DEFAULT_ATOL):
     # Check for U1 and U2 decompositions into minimimal
     # required X90 pulses
     if simplify and np.allclose([theta, phi], [0., 0.], atol=atol):
         # zero X90 gate decomposition
         circuit = QuantumCircuit(1)
         circuit.append(U1Gate(lam), [0])
         return circuit
     if simplify and np.isclose(theta, np.pi / 2, atol=atol):
         # single X90 gate decomposition
         circuit = QuantumCircuit(1)
         circuit.append(U1Gate(lam - np.pi / 2), [0])
         circuit.append(RXGate(np.pi / 2), [0])
         circuit.append(U1Gate(phi + np.pi / 2), [0])
         return circuit
     # General two-X90 gate decomposition
     circuit = QuantumCircuit(1)
     circuit.append(U1Gate(lam), [0])
     circuit.append(RXGate(np.pi / 2), [0])
     circuit.append(U1Gate(theta + np.pi), [0])
     circuit.append(RXGate(np.pi / 2), [0])
     circuit.append(U1Gate(phi + np.pi), [0])
     return circuit
Exemple #6
0
 def test_controlled_rx(self):
     """Test creation of controlled rx gate"""
     theta = 0.5
     self.assertEqual(RXGate(theta).control(), CrxGate(theta))
 def test_controlled_rx(self):
     """Test the creation of a controlled RX gate."""
     theta = 0.5
     self.assertEqual(RXGate(theta).control(), CRXGate(theta))