def setUp(self) -> None: super().setUp() self.seed = 97 backend = BasicAer.get_backend("statevector_simulator") q_instance = QuantumInstance(backend, seed_simulator=self.seed, seed_transpiler=self.seed) self.sampler = CircuitSampler(q_instance, attach_results=True) self.expect = MatrixExpectation()
def test_reuse(self): """Test re-using a VQE algorithm instance.""" vqe = VQE() with self.subTest(msg="assert running empty raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) ansatz = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz") vqe.ansatz = ansatz with self.subTest(msg="assert missing operator raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) vqe.expectation = MatrixExpectation() vqe.quantum_instance = self.statevector_simulator with self.subTest(msg="assert VQE works once all info is available"): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) operator = PrimitiveOp( np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]])) with self.subTest(msg="assert minimum eigensolver interface works"): result = vqe.compute_minimum_eigenvalue(operator=operator) self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5)
def test_get_loss(self): """Test getting the loss function directly.""" pvqd = PVQD( self.ansatz, self.initial_parameters, quantum_instance=self.sv_backend, expectation=MatrixExpectation(), use_parameter_shift=False, ) theta = np.ones(self.ansatz.num_parameters) loss, gradient = pvqd.get_loss(self.hamiltonian, self.ansatz, dt=0.0, current_parameters=theta) displacement = np.arange(self.ansatz.num_parameters) with self.subTest(msg="check gradient is None"): self.assertIsNone(gradient) with self.subTest(msg="check loss works"): self.assertGreater(loss(displacement), 0) self.assertAlmostEqual(loss(np.zeros_like(theta)), 0)
def setUp(self): super().setUp() self.sv_backend = BasicAer.get_backend("statevector_simulator") self.qasm_backend = BasicAer.get_backend("qasm_simulator") self.expectation = MatrixExpectation() self.hamiltonian = 0.1 * (Z ^ Z) + (I ^ X) + (X ^ I) self.observable = Z ^ Z self.ansatz = EfficientSU2(2, reps=1) self.initial_parameters = np.zeros(self.ansatz.num_parameters)
def test_step(self): """Test calling the step method directly.""" pvqd = PVQD( self.ansatz, self.initial_parameters, optimizer=L_BFGS_B(maxiter=100), quantum_instance=self.sv_backend, expectation=MatrixExpectation(), ) # perform optimization for a timestep of 0, then the optimal parameters are the current # ones and the fidelity is 1 theta_next, fidelity = pvqd.step( self.hamiltonian.to_matrix_op(), self.ansatz, self.initial_parameters, dt=0.0, initial_guess=np.zeros_like(self.initial_parameters), ) self.assertTrue(np.allclose(theta_next, self.initial_parameters)) self.assertAlmostEqual(fidelity, 1)
class TestVQE(QiskitAlgorithmsTestCase): """Test VQE""" def setUp(self): super().setUp() self.seed = 50 algorithm_globals.random_seed = self.seed self.h2_op = (-1.052373245772859 * (I ^ I) + 0.39793742484318045 * (I ^ Z) - 0.39793742484318045 * (Z ^ I) - 0.01128010425623538 * (Z ^ Z) + 0.18093119978423156 * (X ^ X)) self.h2_energy = -1.85727503 self.ryrz_wavefunction = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz") self.ry_wavefunction = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") self.qasm_simulator = QuantumInstance( BasicAer.get_backend("qasm_simulator"), shots=1024, seed_simulator=self.seed, seed_transpiler=self.seed, ) self.statevector_simulator = QuantumInstance( BasicAer.get_backend("statevector_simulator"), shots=1, seed_simulator=self.seed, seed_transpiler=self.seed, ) def test_basic_aer_statevector(self): """Test the VQE on BasicAer's statevector simulator.""" wavefunction = self.ryrz_wavefunction vqe = VQE( ansatz=wavefunction, optimizer=L_BFGS_B(), quantum_instance=QuantumInstance( BasicAer.get_backend("statevector_simulator"), basis_gates=["u1", "u2", "u3", "cx", "id"], coupling_map=[[0, 1]], seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ), ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) with self.subTest(msg="test eigenvalue"): self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy) with self.subTest(msg="test dimension of optimal point"): self.assertEqual(len(result.optimal_point), 16) with self.subTest(msg="assert cost_function_evals is set"): self.assertIsNotNone(result.cost_function_evals) with self.subTest(msg="assert optimizer_time is set"): self.assertIsNotNone(result.optimizer_time) def test_circuit_input(self): """Test running the VQE on a plain QuantumCircuit object.""" wavefunction = QuantumCircuit(2).compose(EfficientSU2(2)) optimizer = SLSQP(maxiter=50) vqe = VQE(ansatz=wavefunction, optimizer=optimizer, quantum_instance=self.statevector_simulator) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) @data( (MatrixExpectation(), 1), (AerPauliExpectation(), 1), (PauliExpectation(), 2), ) @unpack def test_construct_circuit(self, expectation, num_circuits): """Test construct circuits returns QuantumCircuits and the right number of them.""" try: wavefunction = EfficientSU2(2, reps=1) vqe = VQE(ansatz=wavefunction, expectation=expectation) params = [0] * wavefunction.num_parameters circuits = vqe.construct_circuit(parameter=params, operator=self.h2_op) self.assertEqual(len(circuits), num_circuits) for circuit in circuits: self.assertIsInstance(circuit, QuantumCircuit) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) return def test_missing_varform_params(self): """Test specifying a variational form with no parameters raises an error.""" circuit = QuantumCircuit(self.h2_op.num_qubits) vqe = VQE( ansatz=circuit, quantum_instance=BasicAer.get_backend("statevector_simulator")) with self.assertRaises(RuntimeError): vqe.compute_minimum_eigenvalue(operator=self.h2_op) @data( (SLSQP(maxiter=50), 5, 4), (SPSA(maxiter=150), 2, 2), # max_evals_grouped=n or =2 if n>2 ) @unpack def test_max_evals_grouped(self, optimizer, places, max_evals_grouped): """VQE Optimizers test""" vqe = VQE( ansatz=self.ryrz_wavefunction, optimizer=optimizer, max_evals_grouped=max_evals_grouped, quantum_instance=self.statevector_simulator, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=places) def test_basic_aer_qasm(self): """Test the VQE on BasicAer's QASM simulator.""" optimizer = SPSA(maxiter=300, last_avg=5) wavefunction = self.ry_wavefunction vqe = VQE( ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=self.qasm_simulator, ) # TODO benchmark this later. result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2) def test_qasm_eigenvector_normalized(self): """Test VQE with qasm_simulator returns normalized eigenvector.""" wavefunction = self.ry_wavefunction vqe = VQE(ansatz=wavefunction, quantum_instance=self.qasm_simulator) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) amplitudes = list(result.eigenstate.values()) self.assertAlmostEqual(np.linalg.norm(amplitudes), 1.0, places=4) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_statevector(self): """Test VQE with Aer's statevector_simulator.""" backend = Aer.get_backend("aer_simulator_statevector") wavefunction = self.ry_wavefunction optimizer = L_BFGS_B() quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=quantum_instance, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_qasm(self): """Test VQE with Aer's qasm_simulator.""" backend = Aer.get_backend("aer_simulator") optimizer = SPSA(maxiter=200, last_avg=5) wavefunction = self.ry_wavefunction quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=wavefunction, optimizer=optimizer, expectation=PauliExpectation(), quantum_instance=quantum_instance, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.86305, places=2) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_qasm_snapshot_mode(self): """Test the VQE using Aer's qasm_simulator snapshot mode.""" backend = Aer.get_backend("aer_simulator") optimizer = L_BFGS_B() wavefunction = self.ry_wavefunction quantum_instance = QuantumInstance( backend, shots=1, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=wavefunction, optimizer=optimizer, expectation=AerPauliExpectation(), quantum_instance=quantum_instance, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") @data( CG(maxiter=1), L_BFGS_B(maxfun=1), P_BFGS(maxfun=1, max_processes=0), SLSQP(maxiter=1), TNC(maxiter=1), ) def test_with_gradient(self, optimizer): """Test VQE using Gradient().""" quantum_instance = QuantumInstance( backend=Aer.get_backend("qasm_simulator"), shots=1, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=self.ry_wavefunction, optimizer=optimizer, gradient=Gradient(), expectation=AerPauliExpectation(), quantum_instance=quantum_instance, max_evals_grouped=1000, ) vqe.compute_minimum_eigenvalue(operator=self.h2_op) def test_with_two_qubit_reduction(self): """Test the VQE using TwoQubitReduction.""" qubit_op = PauliSumOp.from_list([ ("IIII", -0.8105479805373266), ("IIIZ", 0.17218393261915552), ("IIZZ", -0.22575349222402472), ("IZZI", 0.1721839326191556), ("ZZII", -0.22575349222402466), ("IIZI", 0.1209126326177663), ("IZZZ", 0.16892753870087912), ("IXZX", -0.045232799946057854), ("ZXIX", 0.045232799946057854), ("IXIX", 0.045232799946057854), ("ZXZX", -0.045232799946057854), ("ZZIZ", 0.16614543256382414), ("IZIZ", 0.16614543256382414), ("ZZZZ", 0.17464343068300453), ("ZIZI", 0.1209126326177663), ]) tapered_qubit_op = TwoQubitReduction(num_particles=2).convert(qubit_op) for simulator in [self.qasm_simulator, self.statevector_simulator]: with self.subTest(f"Test for {simulator}."): vqe = VQE( self.ry_wavefunction, SPSA(maxiter=300, last_avg=5), quantum_instance=simulator, ) result = vqe.compute_minimum_eigenvalue(tapered_qubit_op) energy = -1.868 if simulator == self.qasm_simulator else self.h2_energy self.assertAlmostEqual(result.eigenvalue.real, energy, places=2) def test_callback(self): """Test the callback on VQE.""" history = {"eval_count": [], "parameters": [], "mean": [], "std": []} def store_intermediate_result(eval_count, parameters, mean, std): history["eval_count"].append(eval_count) history["parameters"].append(parameters) history["mean"].append(mean) history["std"].append(std) optimizer = COBYLA(maxiter=3) wavefunction = self.ry_wavefunction vqe = VQE( ansatz=wavefunction, optimizer=optimizer, callback=store_intermediate_result, quantum_instance=self.qasm_simulator, ) vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertTrue( all(isinstance(count, int) for count in history["eval_count"])) self.assertTrue( all(isinstance(mean, float) for mean in history["mean"])) self.assertTrue(all(isinstance(std, float) for std in history["std"])) for params in history["parameters"]: self.assertTrue(all(isinstance(param, float) for param in params)) def test_reuse(self): """Test re-using a VQE algorithm instance.""" vqe = VQE() with self.subTest(msg="assert running empty raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) ansatz = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz") vqe.ansatz = ansatz with self.subTest(msg="assert missing operator raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) vqe.expectation = MatrixExpectation() vqe.quantum_instance = self.statevector_simulator with self.subTest(msg="assert VQE works once all info is available"): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) operator = PrimitiveOp( np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]])) with self.subTest(msg="assert minimum eigensolver interface works"): result = vqe.compute_minimum_eigenvalue(operator=operator) self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5) def test_vqe_optimizer(self): """Test running same VQE twice to re-use optimizer, then switch optimizer""" vqe = VQE( optimizer=SLSQP(), quantum_instance=QuantumInstance( BasicAer.get_backend("statevector_simulator")), ) def run_check(): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.85727503, places=5) run_check() with self.subTest("Optimizer re-use"): run_check() with self.subTest("Optimizer replace"): vqe.optimizer = L_BFGS_B() run_check() @data(MatrixExpectation(), None) def test_backend_change(self, user_expectation): """Test that VQE works when backend changes.""" vqe = VQE( ansatz=TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz"), optimizer=SLSQP(maxiter=2), expectation=user_expectation, quantum_instance=BasicAer.get_backend("statevector_simulator"), ) result0 = vqe.compute_minimum_eigenvalue(operator=self.h2_op) if user_expectation is not None: with self.subTest("User expectation kept."): self.assertEqual(vqe.expectation, user_expectation) vqe.quantum_instance = BasicAer.get_backend("qasm_simulator") # works also if no expectation is set, since it will be determined automatically result1 = vqe.compute_minimum_eigenvalue(operator=self.h2_op) if user_expectation is not None: with self.subTest( "Change backend with user expectation, it is kept."): self.assertEqual(vqe.expectation, user_expectation) with self.subTest("Check results."): self.assertEqual(len(result0.optimal_point), len(result1.optimal_point)) def test_batch_evaluate_with_qnspsa(self): """Test batch evaluating with QNSPSA works.""" ansatz = TwoLocal(2, rotation_blocks=["ry", "rz"], entanglement_blocks="cz") wrapped_backend = BasicAer.get_backend("qasm_simulator") inner_backend = BasicAer.get_backend("statevector_simulator") callcount = {"count": 0} def wrapped_run(circuits, **kwargs): kwargs["callcount"]["count"] += 1 return inner_backend.run(circuits) wrapped_backend.run = partial(wrapped_run, callcount=callcount) fidelity = QNSPSA.get_fidelity(ansatz, backend=wrapped_backend) qnspsa = QNSPSA(fidelity, maxiter=5) vqe = VQE( ansatz=ansatz, optimizer=qnspsa, max_evals_grouped=100, quantum_instance=wrapped_backend, ) _ = vqe.compute_minimum_eigenvalue(Z ^ Z) # 1 calibration + 1 stddev estimation + 1 initial blocking # + 5 (1 loss + 1 fidelity + 1 blocking) + 1 return loss + 1 VQE eval expected = 1 + 1 + 1 + 5 * 3 + 1 + 1 self.assertEqual(callcount["count"], expected) def test_set_ansatz_to_none(self): """Tests that setting the ansatz to None results in the default behavior""" vqe = VQE( ansatz=self.ryrz_wavefunction, optimizer=L_BFGS_B(), quantum_instance=self.statevector_simulator, ) vqe.ansatz = None self.assertIsInstance(vqe.ansatz, RealAmplitudes) def test_set_optimizer_to_none(self): """Tests that setting the optimizer to None results in the default behavior""" vqe = VQE( ansatz=self.ryrz_wavefunction, optimizer=L_BFGS_B(), quantum_instance=self.statevector_simulator, ) vqe.optimizer = None self.assertIsInstance(vqe.optimizer, SLSQP) def test_optimizer_scipy_callable(self): """Test passing a SciPy optimizer directly as callable.""" vqe = VQE( optimizer=partial(scipy_minimize, method="L-BFGS-B", options={"maxiter": 2}), quantum_instance=self.statevector_simulator, ) result = vqe.compute_minimum_eigenvalue(Z) self.assertEqual(result.cost_function_evals, 20) def test_optimizer_callable(self): """Test passing a optimizer directly as callable.""" ansatz = RealAmplitudes(1, reps=1) vqe = VQE(ansatz=ansatz, optimizer=_mock_optimizer, quantum_instance=self.statevector_simulator) result = vqe.compute_minimum_eigenvalue(Z) self.assertTrue( np.all(result.optimal_point == np.zeros(ansatz.num_parameters))) def test_aux_operators_list(self): """Test list-based aux_operators.""" wavefunction = self.ry_wavefunction vqe = VQE(ansatz=wavefunction, quantum_instance=self.statevector_simulator) # Start with an empty list result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=[]) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) self.assertIsNone(result.aux_operator_eigenvalues) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = [aux_op1, aux_op2] result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=aux_ops) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0, places=6) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0) # Go again with additional None and zero operators extra_ops = [*aux_ops, None, 0] result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=extra_ops) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) self.assertEqual(len(result.aux_operator_eigenvalues), 4) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0, places=6) self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0) self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0) def test_aux_operators_dict(self): """Test dictionary compatibility of aux_operators""" wavefunction = self.ry_wavefunction vqe = VQE(ansatz=wavefunction, quantum_instance=self.statevector_simulator) # Start with an empty dictionary result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators={}) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) self.assertIsNone(result.aux_operator_eigenvalues) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = {"aux_op1": aux_op1, "aux_op2": aux_op2} result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=aux_ops) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][0], 2, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][0], 0, places=6) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][1], 0.0) # Go again with additional None and zero operators extra_ops = {**aux_ops, "None_operator": None, "zero_operator": 0} result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=extra_ops) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) self.assertEqual(len(result.aux_operator_eigenvalues), 3) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][0], 2, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][0], 0, places=6) self.assertEqual(result.aux_operator_eigenvalues["zero_operator"][0], 0.0) self.assertTrue( "None_operator" not in result.aux_operator_eigenvalues.keys()) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op1"][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues["aux_op2"][1], 0.0) self.assertAlmostEqual( result.aux_operator_eigenvalues["zero_operator"][1], 0.0) def test_aux_operator_std_dev_pauli(self): """Test non-zero standard deviations of aux operators with PauliExpectation.""" wavefunction = self.ry_wavefunction vqe = VQE( ansatz=wavefunction, expectation=PauliExpectation(), optimizer=COBYLA(maxiter=0), quantum_instance=self.qasm_simulator, ) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = [aux_op1, aux_op2] result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2.0, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0.6796875, places=6) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.02534712219145965, places=6) # Go again with additional None and zero operators aux_ops = [*aux_ops, None, 0] result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues), 4) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2.0, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0.57421875, places=6) self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0) self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0) # # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.026562146577166837, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_aux_operator_std_dev_aer_pauli(self): """Test non-zero standard deviations of aux operators with AerPauliExpectation.""" wavefunction = self.ry_wavefunction vqe = VQE( ansatz=wavefunction, expectation=AerPauliExpectation(), optimizer=COBYLA(maxiter=0), quantum_instance=QuantumInstance( backend=Aer.get_backend("qasm_simulator"), shots=1, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ), ) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = [aux_op1, aux_op2] result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2.0, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0.6698863565455391, places=6) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0, places=6) # Go again with additional None and zero operators aux_ops = [*aux_ops, None, 0] result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues), 4) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0], 2.0, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][0], 0.6036400943063891, places=6) self.assertEqual(result.aux_operator_eigenvalues[2][0], 0.0) self.assertEqual(result.aux_operator_eigenvalues[3][0], 0.0) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[1][1], 0.0, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[2][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[3][1], 0.0) def test_2step_transpile(self): """Test the two-step transpiler pass.""" # count how often the pass for parameterized circuits is called pre_counter = LogPass("pre_passmanager") pre_pass = PassManager(pre_counter) config = PassManagerConfig(basis_gates=["u3", "cx"]) pre_pass += level_1_pass_manager(config) # ... and the pass for bound circuits bound_counter = LogPass("bound_pass_manager") bound_pass = PassManager(bound_counter) quantum_instance = QuantumInstance( backend=BasicAer.get_backend("statevector_simulator"), basis_gates=["u3", "cx"], pass_manager=pre_pass, bound_pass_manager=bound_pass, ) optimizer = SPSA(maxiter=5, learning_rate=0.01, perturbation=0.01) vqe = VQE(optimizer=optimizer, quantum_instance=quantum_instance) _ = vqe.compute_minimum_eigenvalue(Z) with self.assertLogs(logger, level="INFO") as cm: _ = vqe.compute_minimum_eigenvalue(Z) expected = [ "pre_passmanager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "bound_pass_manager", "pre_passmanager", "bound_pass_manager", ] self.assertEqual([record.message for record in cm.records], expected) def test_construct_eigenstate_from_optpoint(self): """Test constructing the eigenstate from the optimal point, if the default ansatz is used.""" # use Hamiltonian yielding more than 11 parameters in the default ansatz hamiltonian = Z ^ Z ^ Z optimizer = SPSA(maxiter=1, learning_rate=0.01, perturbation=0.01) quantum_instance = QuantumInstance( backend=BasicAer.get_backend("statevector_simulator"), basis_gates=["u3", "cx"]) vqe = VQE(optimizer=optimizer, quantum_instance=quantum_instance) result = vqe.compute_minimum_eigenvalue(hamiltonian) optimal_circuit = vqe.ansatz.bind_parameters(result.optimal_point) self.assertTrue(Statevector(result.eigenstate).equiv(optimal_circuit))
class TestVQE(QiskitAlgorithmsTestCase): """ Test VQE """ def setUp(self): super().setUp() self.seed = 50 aqua_globals.random_seed = self.seed self.h2_op = -1.052373245772859 * (I ^ I) \ + 0.39793742484318045 * (I ^ Z) \ - 0.39793742484318045 * (Z ^ I) \ - 0.01128010425623538 * (Z ^ Z) \ + 0.18093119978423156 * (X ^ X) self.h2_energy = -1.85727503 self.ryrz_wavefunction = TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz') self.ry_wavefunction = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') self.qasm_simulator = QuantumInstance( BasicAer.get_backend('qasm_simulator'), shots=1024, seed_simulator=self.seed, seed_transpiler=self.seed) self.statevector_simulator = QuantumInstance( BasicAer.get_backend('statevector_simulator'), shots=1, seed_simulator=self.seed, seed_transpiler=self.seed) def test_basic_aer_statevector(self): """Test the VQE on BasicAer's statevector simulator.""" wavefunction = self.ryrz_wavefunction vqe = VQE(self.h2_op, wavefunction, L_BFGS_B()) result = vqe.run( QuantumInstance(BasicAer.get_backend('statevector_simulator'), basis_gates=['u1', 'u2', 'u3', 'cx', 'id'], coupling_map=[[0, 1]], seed_simulator=aqua_globals.random_seed, seed_transpiler=aqua_globals.random_seed)) with self.subTest(msg='test eigenvalue'): self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy) with self.subTest(msg='test dimension of optimal point'): self.assertEqual(len(result.optimal_point), 16) with self.subTest(msg='assert cost_function_evals is set'): self.assertIsNotNone(result.cost_function_evals) with self.subTest(msg='assert optimizer_time is set'): self.assertIsNotNone(result.optimizer_time) def test_circuit_input(self): """Test running the VQE on a plain QuantumCircuit object.""" wavefunction = QuantumCircuit(2).compose(EfficientSU2(2)) optimizer = SLSQP(maxiter=50) vqe = VQE(self.h2_op, wavefunction, optimizer=optimizer) result = vqe.run(self.statevector_simulator) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) @data( (MatrixExpectation(), 1), (AerPauliExpectation(), 1), (PauliExpectation(), 2), ) @unpack def test_construct_circuit(self, expectation, num_circuits): """Test construct circuits returns QuantumCircuits and the right number of them.""" try: wavefunction = EfficientSU2(2, reps=1) vqe = VQE(self.h2_op, wavefunction, expectation=expectation) params = [0] * wavefunction.num_parameters circuits = vqe.construct_circuit(params) self.assertEqual(len(circuits), num_circuits) for circuit in circuits: self.assertIsInstance(circuit, QuantumCircuit) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) return def test_legacy_operator(self): """Test the VQE accepts and converts the legacy WeightedPauliOperator.""" pauli_dict = { 'paulis': [{ "coeff": { "imag": 0.0, "real": -1.052373245772859 }, "label": "II" }, { "coeff": { "imag": 0.0, "real": 0.39793742484318045 }, "label": "IZ" }, { "coeff": { "imag": 0.0, "real": -0.39793742484318045 }, "label": "ZI" }, { "coeff": { "imag": 0.0, "real": -0.01128010425623538 }, "label": "ZZ" }, { "coeff": { "imag": 0.0, "real": 0.18093119978423156 }, "label": "XX" }] } h2_op = WeightedPauliOperator.from_dict(pauli_dict) vqe = VQE(h2_op) self.assertEqual(vqe.operator, self.h2_op) def test_missing_varform_params(self): """Test specifying a variational form with no parameters raises an error.""" circuit = QuantumCircuit(self.h2_op.num_qubits) vqe = VQE(self.h2_op, circuit) with self.assertRaises(RuntimeError): vqe.run(BasicAer.get_backend('statevector_simulator')) @data( (SLSQP(maxiter=50), 5, 4), (SPSA(maxiter=150), 3, 2), # max_evals_grouped=n or =2 if n>2 ) @unpack def test_max_evals_grouped(self, optimizer, places, max_evals_grouped): """ VQE Optimizers test """ vqe = VQE(self.h2_op, self.ryrz_wavefunction, optimizer, max_evals_grouped=max_evals_grouped, quantum_instance=self.statevector_simulator) result = vqe.run() self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=places) def test_basic_aer_qasm(self): """Test the VQE on BasicAer's QASM simulator.""" optimizer = SPSA(maxiter=300, last_avg=5) wavefunction = self.ry_wavefunction vqe = VQE(self.h2_op, wavefunction, optimizer, max_evals_grouped=1) # TODO benchmark this later. result = vqe.run(self.qasm_simulator) self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2) def test_qasm_aux_operators_normalized(self): """Test VQE with qasm_simulator returns normalized aux_operator eigenvalues.""" wavefunction = self.ry_wavefunction vqe = VQE(self.h2_op, wavefunction, quantum_instance=self.qasm_simulator) opt_params = [ 3.50437328, 3.87415376, 0.93684363, 5.92219622, -1.53527887, 1.87941418, -4.5708326, 0.70187027 ] vqe._ret = {} vqe._ret['opt_params'] = opt_params vqe._ret['opt_params_dict'] = \ dict(zip(sorted(wavefunction.parameters, key=lambda p: p.name), opt_params)) optimal_vector = vqe.get_optimal_vector() self.assertAlmostEqual(sum([v**2 for v in optimal_vector.values()]), 1.0, places=4) def test_with_aer_statevector(self): """Test VQE with Aer's statevector_simulator.""" try: # pylint: disable=import-outside-toplevel from qiskit import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('statevector_simulator') wavefunction = self.ry_wavefunction optimizer = L_BFGS_B() vqe = VQE(self.h2_op, wavefunction, optimizer, max_evals_grouped=1) quantum_instance = QuantumInstance( backend, seed_simulator=aqua_globals.random_seed, seed_transpiler=aqua_globals.random_seed) result = vqe.run(quantum_instance) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) def test_with_aer_qasm(self): """Test VQE with Aer's qasm_simulator.""" try: # pylint: disable=import-outside-toplevel from qiskit import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('qasm_simulator') optimizer = SPSA(maxiter=200, last_avg=5) wavefunction = self.ry_wavefunction vqe = VQE(self.h2_op, wavefunction, optimizer, expectation=PauliExpectation()) quantum_instance = QuantumInstance( backend, seed_simulator=aqua_globals.random_seed, seed_transpiler=aqua_globals.random_seed) result = vqe.run(quantum_instance) self.assertAlmostEqual(result.eigenvalue.real, -1.86305, places=2) def test_with_aer_qasm_snapshot_mode(self): """Test the VQE using Aer's qasm_simulator snapshot mode.""" try: # pylint: disable=import-outside-toplevel from qiskit import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('qasm_simulator') optimizer = L_BFGS_B() wavefunction = self.ry_wavefunction vqe = VQE(self.h2_op, wavefunction, optimizer, expectation=AerPauliExpectation()) quantum_instance = QuantumInstance( backend, shots=1, seed_simulator=aqua_globals.random_seed, seed_transpiler=aqua_globals.random_seed) result = vqe.run(quantum_instance) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) def test_callback(self): """Test the callback on VQE.""" history = {'eval_count': [], 'parameters': [], 'mean': [], 'std': []} def store_intermediate_result(eval_count, parameters, mean, std): history['eval_count'].append(eval_count) history['parameters'].append(parameters) history['mean'].append(mean) history['std'].append(std) optimizer = COBYLA(maxiter=3) wavefunction = self.ry_wavefunction vqe = VQE(self.h2_op, wavefunction, optimizer, callback=store_intermediate_result) vqe.run(self.qasm_simulator) self.assertTrue( all(isinstance(count, int) for count in history['eval_count'])) self.assertTrue( all(isinstance(mean, float) for mean in history['mean'])) self.assertTrue(all(isinstance(std, float) for std in history['std'])) for params in history['parameters']: self.assertTrue(all(isinstance(param, float) for param in params)) def test_reuse(self): """Test re-using a VQE algorithm instance.""" vqe = VQE() with self.subTest(msg='assert running empty raises AlgorithmError'): with self.assertRaises(AlgorithmError): _ = vqe.run() var_form = TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz') vqe.var_form = var_form with self.subTest(msg='assert missing operator raises AlgorithmError'): with self.assertRaises(AlgorithmError): _ = vqe.run() vqe.operator = self.h2_op with self.subTest(msg='assert missing backend raises AlgorithmError'): with self.assertRaises(AlgorithmError): _ = vqe.run() vqe.quantum_instance = self.statevector_simulator with self.subTest(msg='assert VQE works once all info is available'): result = vqe.run() self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) operator = PrimitiveOp( np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]])) with self.subTest(msg='assert minimum eigensolver interface works'): result = vqe.compute_minimum_eigenvalue(operator) self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5) def test_vqe_optimizer(self): """ Test running same VQE twice to re-use optimizer, then switch optimizer """ vqe = VQE(self.h2_op, optimizer=SLSQP(), quantum_instance=QuantumInstance( BasicAer.get_backend('statevector_simulator'))) def run_check(): result = vqe.compute_minimum_eigenvalue() self.assertAlmostEqual(result.eigenvalue.real, -1.85727503, places=5) run_check() with self.subTest('Optimizer re-use'): run_check() with self.subTest('Optimizer replace'): vqe.optimizer = L_BFGS_B() run_check() def test_vqe_expectation_select(self): """Test expectation selection with Aer's qasm_simulator.""" try: # pylint: disable=import-outside-toplevel from qiskit import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('qasm_simulator') with self.subTest('Defaults'): vqe = VQE(self.h2_op, quantum_instance=backend) self.assertIsInstance(vqe.expectation, PauliExpectation) with self.subTest('Include custom'): vqe = VQE(self.h2_op, include_custom=True, quantum_instance=backend) self.assertIsInstance(vqe.expectation, AerPauliExpectation) with self.subTest('Set explicitly'): vqe = VQE(self.h2_op, expectation=AerPauliExpectation(), quantum_instance=backend) self.assertIsInstance(vqe.expectation, AerPauliExpectation) @unittest.skip(reason="IBMQ testing not available in general.") def test_ibmq(self): """ IBMQ VQE Test """ from qiskit import IBMQ provider = IBMQ.load_account() backend = provider.get_backend('ibmq_qasm_simulator') ansatz = TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz') opt = SLSQP(maxiter=1) opt.set_max_evals_grouped(100) vqe = VQE(self.h2_op, ansatz, SLSQP(maxiter=2)) result = vqe.run(backend) print(result) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy) np.testing.assert_array_almost_equal(result.eigenvalue.real, self.h2_energy, 5) self.assertEqual(len(result.optimal_point), 16) self.assertIsNotNone(result.cost_function_evals) self.assertIsNotNone(result.optimizer_time) @data(MatrixExpectation(), None) def test_backend_change(self, user_expectation): """Test that VQE works when backend changes.""" vqe = VQE( operator=self.h2_op, var_form=TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz'), optimizer=SLSQP(maxiter=2), expectation=user_expectation, quantum_instance=BasicAer.get_backend('statevector_simulator')) result0 = vqe.run() if user_expectation is not None: with self.subTest('User expectation kept.'): self.assertEqual(vqe.expectation, user_expectation) else: with self.subTest('Expectation created.'): self.assertIsInstance(vqe.expectation, ExpectationBase) try: vqe.set_backend(BasicAer.get_backend('qasm_simulator')) except Exception as ex: # pylint: disable=broad-except self.fail("Failed to change backend. Error: '{}'".format(str(ex))) return result1 = vqe.run() if user_expectation is not None: with self.subTest( 'Change backend with user expectation, it is kept.'): self.assertEqual(vqe.expectation, user_expectation) else: with self.subTest( 'Change backend without user expectation, one created.'): self.assertIsInstance(vqe.expectation, ExpectationBase) with self.subTest('Check results.'): self.assertEqual(len(result0.optimal_point), len(result1.optimal_point))
class TestVQE(QiskitAlgorithmsTestCase): """ Test VQE """ def setUp(self): super().setUp() self.seed = 50 algorithm_globals.random_seed = self.seed self.h2_op = -1.052373245772859 * (I ^ I) \ + 0.39793742484318045 * (I ^ Z) \ - 0.39793742484318045 * (Z ^ I) \ - 0.01128010425623538 * (Z ^ Z) \ + 0.18093119978423156 * (X ^ X) self.h2_energy = -1.85727503 self.ryrz_wavefunction = TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz') self.ry_wavefunction = TwoLocal(rotation_blocks='ry', entanglement_blocks='cz') self.qasm_simulator = QuantumInstance( BasicAer.get_backend('qasm_simulator'), shots=1024, seed_simulator=self.seed, seed_transpiler=self.seed) self.statevector_simulator = QuantumInstance( BasicAer.get_backend('statevector_simulator'), shots=1, seed_simulator=self.seed, seed_transpiler=self.seed) def test_basic_aer_statevector(self): """Test the VQE on BasicAer's statevector simulator.""" wavefunction = self.ryrz_wavefunction vqe = VQE(ansatz=wavefunction, optimizer=L_BFGS_B(), quantum_instance=QuantumInstance( BasicAer.get_backend('statevector_simulator'), basis_gates=['u1', 'u2', 'u3', 'cx', 'id'], coupling_map=[[0, 1]], seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed)) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) with self.subTest(msg='test eigenvalue'): self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy) with self.subTest(msg='test dimension of optimal point'): self.assertEqual(len(result.optimal_point), 16) with self.subTest(msg='assert cost_function_evals is set'): self.assertIsNotNone(result.cost_function_evals) with self.subTest(msg='assert optimizer_time is set'): self.assertIsNotNone(result.optimizer_time) def test_circuit_input(self): """Test running the VQE on a plain QuantumCircuit object.""" wavefunction = QuantumCircuit(2).compose(EfficientSU2(2)) optimizer = SLSQP(maxiter=50) vqe = VQE(ansatz=wavefunction, optimizer=optimizer, quantum_instance=self.statevector_simulator) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) @data( (MatrixExpectation(), 1), (AerPauliExpectation(), 1), (PauliExpectation(), 2), ) @unpack def test_construct_circuit(self, expectation, num_circuits): """Test construct circuits returns QuantumCircuits and the right number of them.""" try: wavefunction = EfficientSU2(2, reps=1) vqe = VQE(ansatz=wavefunction, expectation=expectation) params = [0] * wavefunction.num_parameters circuits = vqe.construct_circuit(parameter=params, operator=self.h2_op) self.assertEqual(len(circuits), num_circuits) for circuit in circuits: self.assertIsInstance(circuit, QuantumCircuit) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) return def test_missing_varform_params(self): """Test specifying a variational form with no parameters raises an error.""" circuit = QuantumCircuit(self.h2_op.num_qubits) vqe = VQE( ansatz=circuit, quantum_instance=BasicAer.get_backend('statevector_simulator')) with self.assertRaises(RuntimeError): vqe.compute_minimum_eigenvalue(operator=self.h2_op) @data( (SLSQP(maxiter=50), 5, 4), (SPSA(maxiter=150), 3, 2), # max_evals_grouped=n or =2 if n>2 ) @unpack def test_max_evals_grouped(self, optimizer, places, max_evals_grouped): """ VQE Optimizers test """ vqe = VQE(ansatz=self.ryrz_wavefunction, optimizer=optimizer, max_evals_grouped=max_evals_grouped, quantum_instance=self.statevector_simulator) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=places) def test_basic_aer_qasm(self): """Test the VQE on BasicAer's QASM simulator.""" optimizer = SPSA(maxiter=300, last_avg=5) wavefunction = self.ry_wavefunction vqe = VQE(ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=self.qasm_simulator) # TODO benchmark this later. result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2) def test_qasm_aux_operators_normalized(self): """Test VQE with qasm_simulator returns normalized aux_operator eigenvalues.""" wavefunction = self.ry_wavefunction vqe = VQE(ansatz=wavefunction, quantum_instance=self.qasm_simulator) _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) opt_params = [ 3.50437328, 3.87415376, 0.93684363, 5.92219622, -1.53527887, 1.87941418, -4.5708326, 0.70187027 ] vqe._ret.optimal_point = opt_params vqe._ret.optimal_parameters = \ dict(zip(sorted(wavefunction.parameters, key=lambda p: p.name), opt_params)) optimal_vector = vqe.get_optimal_vector() self.assertAlmostEqual(sum([v**2 for v in optimal_vector.values()]), 1.0, places=4) def test_with_aer_statevector(self): """Test VQE with Aer's statevector_simulator.""" try: from qiskit.providers.aer import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('statevector_simulator') wavefunction = self.ry_wavefunction optimizer = L_BFGS_B() quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed) vqe = VQE(ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=quantum_instance) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) def test_with_aer_qasm(self): """Test VQE with Aer's qasm_simulator.""" try: from qiskit.providers.aer import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('qasm_simulator') optimizer = SPSA(maxiter=200, last_avg=5) wavefunction = self.ry_wavefunction quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed) vqe = VQE(ansatz=wavefunction, optimizer=optimizer, expectation=PauliExpectation(), quantum_instance=quantum_instance) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.86305, places=2) def test_with_aer_qasm_snapshot_mode(self): """Test the VQE using Aer's qasm_simulator snapshot mode.""" try: from qiskit.providers.aer import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('qasm_simulator') optimizer = L_BFGS_B() wavefunction = self.ry_wavefunction quantum_instance = QuantumInstance( backend, shots=1, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed) vqe = VQE(ansatz=wavefunction, optimizer=optimizer, expectation=AerPauliExpectation(), quantum_instance=quantum_instance) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) def test_with_two_qubit_reduction(self): """Test the VQE using TwoQubitReduction.""" qubit_op = PauliSumOp.from_list([ ("IIII", -0.8105479805373266), ("IIIZ", 0.17218393261915552), ("IIZZ", -0.22575349222402472), ("IZZI", 0.1721839326191556), ("ZZII", -0.22575349222402466), ("IIZI", 0.1209126326177663), ("IZZZ", 0.16892753870087912), ("IXZX", -0.045232799946057854), ("ZXIX", 0.045232799946057854), ("IXIX", 0.045232799946057854), ("ZXZX", -0.045232799946057854), ("ZZIZ", 0.16614543256382414), ("IZIZ", 0.16614543256382414), ("ZZZZ", 0.17464343068300453), ("ZIZI", 0.1209126326177663), ]) tapered_qubit_op = TwoQubitReduction(num_particles=2).convert(qubit_op) for simulator in [self.qasm_simulator, self.statevector_simulator]: with self.subTest(f"Test for {simulator}."): vqe = VQE( self.ry_wavefunction, SPSA(maxiter=300, last_avg=5), quantum_instance=simulator, ) result = vqe.compute_minimum_eigenvalue(tapered_qubit_op) energy = -1.868 if simulator == self.qasm_simulator else self.h2_energy self.assertAlmostEqual(result.eigenvalue.real, energy, places=2) def test_callback(self): """Test the callback on VQE.""" history = {'eval_count': [], 'parameters': [], 'mean': [], 'std': []} def store_intermediate_result(eval_count, parameters, mean, std): history['eval_count'].append(eval_count) history['parameters'].append(parameters) history['mean'].append(mean) history['std'].append(std) optimizer = COBYLA(maxiter=3) wavefunction = self.ry_wavefunction vqe = VQE(ansatz=wavefunction, optimizer=optimizer, callback=store_intermediate_result, quantum_instance=self.qasm_simulator) vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertTrue( all(isinstance(count, int) for count in history['eval_count'])) self.assertTrue( all(isinstance(mean, float) for mean in history['mean'])) self.assertTrue(all(isinstance(std, float) for std in history['std'])) for params in history['parameters']: self.assertTrue(all(isinstance(param, float) for param in params)) def test_reuse(self): """Test re-using a VQE algorithm instance.""" vqe = VQE() with self.subTest(msg='assert running empty raises AlgorithmError'): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) ansatz = TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz') vqe.ansatz = ansatz with self.subTest(msg='assert missing operator raises AlgorithmError'): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) vqe.quantum_instance = self.statevector_simulator with self.subTest(msg='assert VQE works once all info is available'): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) operator = PrimitiveOp( np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]])) with self.subTest(msg='assert minimum eigensolver interface works'): result = vqe.compute_minimum_eigenvalue(operator=operator) self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5) def test_vqe_optimizer(self): """ Test running same VQE twice to re-use optimizer, then switch optimizer """ vqe = VQE(optimizer=SLSQP(), quantum_instance=QuantumInstance( BasicAer.get_backend('statevector_simulator'))) def run_check(): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.85727503, places=5) run_check() with self.subTest('Optimizer re-use'): run_check() with self.subTest('Optimizer replace'): vqe.optimizer = L_BFGS_B() run_check() def test_vqe_expectation_select(self): """Test expectation selection with Aer's qasm_simulator.""" try: from qiskit.providers.aer import Aer except Exception as ex: # pylint: disable=broad-except self.skipTest( "Aer doesn't appear to be installed. Error: '{}'".format( str(ex))) return backend = Aer.get_backend('qasm_simulator') with self.subTest('Defaults'): vqe = VQE(quantum_instance=backend) vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertIsInstance(vqe.expectation, PauliExpectation) with self.subTest('Include custom'): vqe = VQE(include_custom=True, quantum_instance=backend) vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertIsInstance(vqe.expectation, AerPauliExpectation) with self.subTest('Set explicitly'): vqe = VQE(expectation=AerPauliExpectation(), quantum_instance=backend) vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertIsInstance(vqe.expectation, AerPauliExpectation) @data(MatrixExpectation(), None) def test_backend_change(self, user_expectation): """Test that VQE works when backend changes.""" vqe = VQE( ansatz=TwoLocal(rotation_blocks=['ry', 'rz'], entanglement_blocks='cz'), optimizer=SLSQP(maxiter=2), expectation=user_expectation, quantum_instance=BasicAer.get_backend('statevector_simulator')) result0 = vqe.compute_minimum_eigenvalue(operator=self.h2_op) if user_expectation is not None: with self.subTest('User expectation kept.'): self.assertEqual(vqe.expectation, user_expectation) else: with self.subTest('Expectation created.'): self.assertIsInstance(vqe.expectation, ExpectationBase) try: vqe.quantum_instance = BasicAer.get_backend('qasm_simulator') except Exception as ex: # pylint: disable=broad-except self.fail("Failed to change backend. Error: '{}'".format(str(ex))) return result1 = vqe.compute_minimum_eigenvalue(operator=self.h2_op) if user_expectation is not None: with self.subTest( 'Change backend with user expectation, it is kept.'): self.assertEqual(vqe.expectation, user_expectation) else: with self.subTest( 'Change backend without user expectation, one created.'): self.assertIsInstance(vqe.expectation, ExpectationBase) with self.subTest('Check results.'): self.assertEqual(len(result0.optimal_point), len(result1.optimal_point))
class TestCVaRExpectation(QiskitOpflowTestCase): """Test the CVaR expectation object.""" def test_construction(self): """Test the correct operator expression is constructed.""" alpha = 0.5 base_expecation = PauliExpectation() cvar_expecation = CVaRExpectation(alpha=alpha, expectation=base_expecation) with self.subTest('single operator'): op = ~StateFn(Z) @ Plus expected = CVaRMeasurement(Z, alpha) @ Plus cvar = cvar_expecation.convert(op) self.assertEqual(cvar, expected) with self.subTest('list operator'): op = ~StateFn(ListOp([Z ^ Z, I ^ Z])) @ (Plus ^ Plus) expected = ListOp([ CVaRMeasurement((Z ^ Z), alpha) @ (Plus ^ Plus), CVaRMeasurement((I ^ Z), alpha) @ (Plus ^ Plus) ]) cvar = cvar_expecation.convert(op) self.assertEqual(cvar, expected) def test_unsupported_expectation(self): """Assert passing an AerPauliExpectation raises an error.""" expecation = AerPauliExpectation() with self.assertRaises(NotImplementedError): _ = CVaRExpectation(alpha=1, expectation=expecation) @data(PauliExpectation(), MatrixExpectation()) def test_underlying_expectation(self, base_expecation): """Test the underlying expectation works correctly.""" cvar_expecation = CVaRExpectation(alpha=0.3, expectation=base_expecation) circuit = QuantumCircuit(2) circuit.z(0) circuit.cp(0.5, 0, 1) circuit.t(1) op = ~StateFn(CircuitOp(circuit)) @ (Plus ^ 2) cvar = cvar_expecation.convert(op) expected = base_expecation.convert(op) # test if the operators have been transformed in the same manner self.assertEqual(cvar.oplist[0].primitive, expected.oplist[0].primitive) def test_compute_variance(self): """Test if the compute_variance method works""" alphas = [0, .3, 0.5, 0.7, 1] correct_vars = [0, 0, 0, 0.8163, 1] for i, alpha in enumerate(alphas): base_expecation = PauliExpectation() cvar_expecation = CVaRExpectation(alpha=alpha, expectation=base_expecation) op = ~StateFn(Z ^ Z) @ (Plus ^ Plus) cvar_var = cvar_expecation.compute_variance(op) np.testing.assert_almost_equal(cvar_var, correct_vars[i], decimal=3)
class TestVQE(QiskitAlgorithmsTestCase): """Test VQE""" def setUp(self): super().setUp() self.seed = 50 algorithm_globals.random_seed = self.seed self.h2_op = (-1.052373245772859 * (I ^ I) + 0.39793742484318045 * (I ^ Z) - 0.39793742484318045 * (Z ^ I) - 0.01128010425623538 * (Z ^ Z) + 0.18093119978423156 * (X ^ X)) self.h2_energy = -1.85727503 self.ryrz_wavefunction = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz") self.ry_wavefunction = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") self.qasm_simulator = QuantumInstance( BasicAer.get_backend("qasm_simulator"), shots=1024, seed_simulator=self.seed, seed_transpiler=self.seed, ) self.statevector_simulator = QuantumInstance( BasicAer.get_backend("statevector_simulator"), shots=1, seed_simulator=self.seed, seed_transpiler=self.seed, ) def test_basic_aer_statevector(self): """Test the VQE on BasicAer's statevector simulator.""" wavefunction = self.ryrz_wavefunction vqe = VQE( ansatz=wavefunction, optimizer=L_BFGS_B(), quantum_instance=QuantumInstance( BasicAer.get_backend("statevector_simulator"), basis_gates=["u1", "u2", "u3", "cx", "id"], coupling_map=[[0, 1]], seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ), ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) with self.subTest(msg="test eigenvalue"): self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy) with self.subTest(msg="test dimension of optimal point"): self.assertEqual(len(result.optimal_point), 16) with self.subTest(msg="assert cost_function_evals is set"): self.assertIsNotNone(result.cost_function_evals) with self.subTest(msg="assert optimizer_time is set"): self.assertIsNotNone(result.optimizer_time) def test_circuit_input(self): """Test running the VQE on a plain QuantumCircuit object.""" wavefunction = QuantumCircuit(2).compose(EfficientSU2(2)) optimizer = SLSQP(maxiter=50) vqe = VQE(ansatz=wavefunction, optimizer=optimizer, quantum_instance=self.statevector_simulator) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) @data( (MatrixExpectation(), 1), (AerPauliExpectation(), 1), (PauliExpectation(), 2), ) @unpack def test_construct_circuit(self, expectation, num_circuits): """Test construct circuits returns QuantumCircuits and the right number of them.""" try: wavefunction = EfficientSU2(2, reps=1) vqe = VQE(ansatz=wavefunction, expectation=expectation) params = [0] * wavefunction.num_parameters circuits = vqe.construct_circuit(parameter=params, operator=self.h2_op) self.assertEqual(len(circuits), num_circuits) for circuit in circuits: self.assertIsInstance(circuit, QuantumCircuit) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) return def test_missing_varform_params(self): """Test specifying a variational form with no parameters raises an error.""" circuit = QuantumCircuit(self.h2_op.num_qubits) vqe = VQE( ansatz=circuit, quantum_instance=BasicAer.get_backend("statevector_simulator")) with self.assertRaises(RuntimeError): vqe.compute_minimum_eigenvalue(operator=self.h2_op) @data( (SLSQP(maxiter=50), 5, 4), (SPSA(maxiter=150), 3, 2), # max_evals_grouped=n or =2 if n>2 ) @unpack def test_max_evals_grouped(self, optimizer, places, max_evals_grouped): """VQE Optimizers test""" with self.assertWarns(DeprecationWarning): vqe = VQE( ansatz=self.ryrz_wavefunction, optimizer=optimizer, max_evals_grouped=max_evals_grouped, quantum_instance=self.statevector_simulator, sort_parameters_by_name=True, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=places) def test_basic_aer_qasm(self): """Test the VQE on BasicAer's QASM simulator.""" optimizer = SPSA(maxiter=300, last_avg=5) wavefunction = self.ry_wavefunction vqe = VQE( ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=self.qasm_simulator, ) # TODO benchmark this later. result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.86823, places=2) def test_qasm_aux_operators_normalized(self): """Test VQE with qasm_simulator returns normalized aux_operator eigenvalues.""" wavefunction = self.ry_wavefunction vqe = VQE(ansatz=wavefunction, quantum_instance=self.qasm_simulator) _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) opt_params = [ 3.50437328, 3.87415376, 0.93684363, 5.92219622, -1.53527887, 1.87941418, -4.5708326, 0.70187027, ] vqe._ret.optimal_point = opt_params vqe._ret.optimal_parameters = dict( zip(sorted(wavefunction.parameters, key=lambda p: p.name), opt_params)) with self.assertWarns(DeprecationWarning): optimal_vector = vqe.get_optimal_vector() self.assertAlmostEqual(sum(v**2 for v in optimal_vector.values()), 1.0, places=4) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_statevector(self): """Test VQE with Aer's statevector_simulator.""" backend = Aer.get_backend("aer_simulator_statevector") wavefunction = self.ry_wavefunction optimizer = L_BFGS_B() quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=quantum_instance, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_qasm(self): """Test VQE with Aer's qasm_simulator.""" backend = Aer.get_backend("aer_simulator") optimizer = SPSA(maxiter=200, last_avg=5) wavefunction = self.ry_wavefunction quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=wavefunction, optimizer=optimizer, expectation=PauliExpectation(), quantum_instance=quantum_instance, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.86305, places=2) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_qasm_snapshot_mode(self): """Test the VQE using Aer's qasm_simulator snapshot mode.""" backend = Aer.get_backend("aer_simulator") optimizer = L_BFGS_B() wavefunction = self.ry_wavefunction quantum_instance = QuantumInstance( backend, shots=1, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=wavefunction, optimizer=optimizer, expectation=AerPauliExpectation(), quantum_instance=quantum_instance, ) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=6) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") @data( CG(maxiter=1), L_BFGS_B(maxfun=1), P_BFGS(maxfun=1, max_processes=0), SLSQP(maxiter=1), TNC(maxiter=1), ) def test_with_gradient(self, optimizer): """Test VQE using Gradient().""" quantum_instance = QuantumInstance( backend=Aer.get_backend("qasm_simulator"), shots=1, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqe = VQE( ansatz=self.ry_wavefunction, optimizer=optimizer, gradient=Gradient(), expectation=AerPauliExpectation(), quantum_instance=quantum_instance, max_evals_grouped=1000, ) vqe.compute_minimum_eigenvalue(operator=self.h2_op) def test_with_two_qubit_reduction(self): """Test the VQE using TwoQubitReduction.""" qubit_op = PauliSumOp.from_list([ ("IIII", -0.8105479805373266), ("IIIZ", 0.17218393261915552), ("IIZZ", -0.22575349222402472), ("IZZI", 0.1721839326191556), ("ZZII", -0.22575349222402466), ("IIZI", 0.1209126326177663), ("IZZZ", 0.16892753870087912), ("IXZX", -0.045232799946057854), ("ZXIX", 0.045232799946057854), ("IXIX", 0.045232799946057854), ("ZXZX", -0.045232799946057854), ("ZZIZ", 0.16614543256382414), ("IZIZ", 0.16614543256382414), ("ZZZZ", 0.17464343068300453), ("ZIZI", 0.1209126326177663), ]) tapered_qubit_op = TwoQubitReduction(num_particles=2).convert(qubit_op) for simulator in [self.qasm_simulator, self.statevector_simulator]: with self.subTest(f"Test for {simulator}."): vqe = VQE( self.ry_wavefunction, SPSA(maxiter=300, last_avg=5), quantum_instance=simulator, ) result = vqe.compute_minimum_eigenvalue(tapered_qubit_op) energy = -1.868 if simulator == self.qasm_simulator else self.h2_energy self.assertAlmostEqual(result.eigenvalue.real, energy, places=2) def test_callback(self): """Test the callback on VQE.""" history = {"eval_count": [], "parameters": [], "mean": [], "std": []} def store_intermediate_result(eval_count, parameters, mean, std): history["eval_count"].append(eval_count) history["parameters"].append(parameters) history["mean"].append(mean) history["std"].append(std) optimizer = COBYLA(maxiter=3) wavefunction = self.ry_wavefunction vqe = VQE( ansatz=wavefunction, optimizer=optimizer, callback=store_intermediate_result, quantum_instance=self.qasm_simulator, ) vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertTrue( all(isinstance(count, int) for count in history["eval_count"])) self.assertTrue( all(isinstance(mean, float) for mean in history["mean"])) self.assertTrue(all(isinstance(std, float) for std in history["std"])) for params in history["parameters"]: self.assertTrue(all(isinstance(param, float) for param in params)) def test_reuse(self): """Test re-using a VQE algorithm instance.""" vqe = VQE() with self.subTest(msg="assert running empty raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) ansatz = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz") vqe.ansatz = ansatz with self.subTest(msg="assert missing operator raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) vqe.expectation = MatrixExpectation() vqe.quantum_instance = self.statevector_simulator with self.subTest(msg="assert VQE works once all info is available"): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) operator = PrimitiveOp( np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]])) with self.subTest(msg="assert minimum eigensolver interface works"): result = vqe.compute_minimum_eigenvalue(operator=operator) self.assertAlmostEqual(result.eigenvalue.real, -1.0, places=5) def test_vqe_optimizer(self): """Test running same VQE twice to re-use optimizer, then switch optimizer""" vqe = VQE( optimizer=SLSQP(), quantum_instance=QuantumInstance( BasicAer.get_backend("statevector_simulator")), ) def run_check(): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, -1.85727503, places=5) run_check() with self.subTest("Optimizer re-use"): run_check() with self.subTest("Optimizer replace"): vqe.optimizer = L_BFGS_B() run_check() @data(MatrixExpectation(), None) def test_backend_change(self, user_expectation): """Test that VQE works when backend changes.""" vqe = VQE( ansatz=TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz"), optimizer=SLSQP(maxiter=2), expectation=user_expectation, quantum_instance=BasicAer.get_backend("statevector_simulator"), ) result0 = vqe.compute_minimum_eigenvalue(operator=self.h2_op) if user_expectation is not None: with self.subTest("User expectation kept."): self.assertEqual(vqe.expectation, user_expectation) vqe.quantum_instance = BasicAer.get_backend("qasm_simulator") # works also if no expectation is set, since it will be determined automatically result1 = vqe.compute_minimum_eigenvalue(operator=self.h2_op) if user_expectation is not None: with self.subTest( "Change backend with user expectation, it is kept."): self.assertEqual(vqe.expectation, user_expectation) with self.subTest("Check results."): self.assertEqual(len(result0.optimal_point), len(result1.optimal_point)) def test_batch_evaluate_with_qnspsa(self): """Test batch evaluating with QNSPSA works.""" ansatz = TwoLocal(2, rotation_blocks=["ry", "rz"], entanglement_blocks="cz") wrapped_backend = BasicAer.get_backend("qasm_simulator") inner_backend = BasicAer.get_backend("statevector_simulator") callcount = {"count": 0} def wrapped_run(circuits, **kwargs): kwargs["callcount"]["count"] += 1 return inner_backend.run(circuits) wrapped_backend.run = partial(wrapped_run, callcount=callcount) fidelity = QNSPSA.get_fidelity(ansatz, backend=wrapped_backend) qnspsa = QNSPSA(fidelity, maxiter=5) vqe = VQE( ansatz=ansatz, optimizer=qnspsa, max_evals_grouped=100, quantum_instance=wrapped_backend, ) _ = vqe.compute_minimum_eigenvalue(Z ^ Z) # 1 calibration + 1 stddev estimation + 1 initial blocking # + 5 (1 loss + 1 fidelity + 1 blocking) + 1 return loss + 1 VQE eval expected = 1 + 1 + 1 + 5 * 3 + 1 + 1 self.assertEqual(callcount["count"], expected)
def setUp(self): super().setUp() self.sv_backend = BasicAer.get_backend("statevector_simulator") self.expectation = MatrixExpectation() self.hamiltonian = 0.1 * (Z ^ Z) + (I ^ X) + (X ^ I) self.ansatz = EfficientSU2(2, reps=1)
class TestMatrixExpectation(QiskitOpflowTestCase): """Pauli Change of Basis Expectation tests.""" def setUp(self) -> None: super().setUp() self.seed = 97 backend = BasicAer.get_backend("statevector_simulator") q_instance = QuantumInstance(backend, seed_simulator=self.seed, seed_transpiler=self.seed) self.sampler = CircuitSampler(q_instance, attach_results=True) self.expect = MatrixExpectation() def test_pauli_expect_pair(self): """pauli expect pair test""" op = Z ^ Z # wf = (Pl^Pl) + (Ze^Ze) wf = CX @ (H ^ I) @ Zero converted_meas = self.expect.convert(~StateFn(op) @ wf) self.assertAlmostEqual(converted_meas.eval(), 0, delta=0.1) sampled = self.sampler.convert(converted_meas) self.assertAlmostEqual(sampled.eval(), 0, delta=0.1) def test_pauli_expect_single(self): """pauli expect single test""" paulis = [Z, X, Y, I] states = [Zero, One, Plus, Minus, S @ Plus, S @ Minus] for pauli, state in itertools.product(paulis, states): converted_meas = self.expect.convert(~StateFn(pauli) @ state) matmulmean = state.adjoint().to_matrix() @ pauli.to_matrix( ) @ state.to_matrix() self.assertAlmostEqual(converted_meas.eval(), matmulmean, delta=0.1) sampled = self.sampler.convert(converted_meas) self.assertAlmostEqual(sampled.eval(), matmulmean, delta=0.1) def test_pauli_expect_op_vector(self): """pauli expect op vector test""" paulis_op = ListOp([X, Y, Z, I]) converted_meas = self.expect.convert(~StateFn(paulis_op)) plus_mean = converted_meas @ Plus np.testing.assert_array_almost_equal(plus_mean.eval(), [1, 0, 0, 1], decimal=1) sampled_plus = self.sampler.convert(plus_mean) np.testing.assert_array_almost_equal(sampled_plus.eval(), [1, 0, 0, 1], decimal=1) minus_mean = converted_meas @ Minus np.testing.assert_array_almost_equal(minus_mean.eval(), [-1, 0, 0, 1], decimal=1) sampled_minus = self.sampler.convert(minus_mean) np.testing.assert_array_almost_equal(sampled_minus.eval(), [-1, 0, 0, 1], decimal=1) zero_mean = converted_meas @ Zero np.testing.assert_array_almost_equal(zero_mean.eval(), [0, 0, 1, 1], decimal=1) sampled_zero = self.sampler.convert(zero_mean) np.testing.assert_array_almost_equal(sampled_zero.eval(), [0, 0, 1, 1], decimal=1) sum_zero = (Plus + Minus) * (0.5**0.5) sum_zero_mean = converted_meas @ sum_zero np.testing.assert_array_almost_equal(sum_zero_mean.eval(), [0, 0, 1, 1], decimal=1) sampled_zero = self.sampler.convert(sum_zero) np.testing.assert_array_almost_equal( (converted_meas @ sampled_zero).eval(), [0, 0, 1, 1], decimal=1) for i, op in enumerate(paulis_op.oplist): mat_op = op.to_matrix() np.testing.assert_array_almost_equal( zero_mean.eval()[i], Zero.adjoint().to_matrix() @ mat_op @ Zero.to_matrix(), decimal=1, ) np.testing.assert_array_almost_equal( plus_mean.eval()[i], Plus.adjoint().to_matrix() @ mat_op @ Plus.to_matrix(), decimal=1, ) np.testing.assert_array_almost_equal( minus_mean.eval()[i], Minus.adjoint().to_matrix() @ mat_op @ Minus.to_matrix(), decimal=1, ) def test_pauli_expect_state_vector(self): """pauli expect state vector test""" states_op = ListOp([One, Zero, Plus, Minus]) paulis_op = X converted_meas = self.expect.convert(~StateFn(paulis_op) @ states_op) np.testing.assert_array_almost_equal(converted_meas.eval(), [0, 0, 1, -1], decimal=1) sampled = self.sampler.convert(converted_meas) np.testing.assert_array_almost_equal(sampled.eval(), [0, 0, 1, -1], decimal=1) # Small test to see if execution results are accessible for composed_op in sampled: self.assertIn("statevector", composed_op[1].execution_results) def test_pauli_expect_op_vector_state_vector(self): """pauli expect op vector state vector test""" paulis_op = ListOp([X, Y, Z, I]) states_op = ListOp([One, Zero, Plus, Minus]) valids = [[+0, 0, 1, -1], [+0, 0, 0, 0], [-1, 1, 0, -0], [+1, 1, 1, 1]] converted_meas = self.expect.convert(~StateFn(paulis_op)) np.testing.assert_array_almost_equal( (converted_meas @ states_op).eval(), valids, decimal=1) sampled = self.sampler.convert(states_op) np.testing.assert_array_almost_equal((converted_meas @ sampled).eval(), valids, decimal=1) def test_multi_representation_ops(self): """Test observables with mixed representations""" mixed_ops = ListOp([X.to_matrix_op(), H, H + I, X]) converted_meas = self.expect.convert(~StateFn(mixed_ops)) plus_mean = converted_meas @ Plus sampled_plus = self.sampler.convert(plus_mean) np.testing.assert_array_almost_equal(sampled_plus.eval(), [1, 0.5**0.5, (1 + 0.5**0.5), 1], decimal=1) def test_matrix_expectation_non_hermite_op(self): """Test MatrixExpectation for non hermitian operator""" exp = ~StateFn(1j * Z) @ One self.assertEqual(self.expect.convert(exp).eval(), 1j)
class TestVQD(QiskitAlgorithmsTestCase): """Test VQD""" def setUp(self): super().setUp() self.seed = 50 algorithm_globals.random_seed = self.seed self.h2_op = (-1.052373245772859 * (I ^ I) + 0.39793742484318045 * (I ^ Z) - 0.39793742484318045 * (Z ^ I) - 0.01128010425623538 * (Z ^ Z) + 0.18093119978423156 * (X ^ X)) self.h2_energy = -1.85727503 self.h2_energy_excited = [-1.85727503, -1.24458455] self.test_op = MatrixOp(np.diagflat([3, 5, -1, 0.8, 0.2, 2, 1, -3])).to_pauli_op() self.test_results = [-3, -1] self.ryrz_wavefunction = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz", reps=1) self.ry_wavefunction = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") self.qasm_simulator = QuantumInstance( BasicAer.get_backend("qasm_simulator"), shots=2048, seed_simulator=self.seed, seed_transpiler=self.seed, ) self.statevector_simulator = QuantumInstance( BasicAer.get_backend("statevector_simulator"), shots=1, seed_simulator=self.seed, seed_transpiler=self.seed, ) def test_basic_aer_statevector(self): """Test the VQD on BasicAer's statevector simulator.""" wavefunction = self.ryrz_wavefunction vqd = VQD( k=2, ansatz=wavefunction, optimizer=COBYLA(), quantum_instance=QuantumInstance( BasicAer.get_backend("statevector_simulator"), basis_gates=["u1", "u2", "u3", "cx", "id"], coupling_map=[[0, 1]], seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ), ) result = vqd.compute_eigenvalues(operator=self.h2_op) with self.subTest(msg="test eigenvalue"): np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=1) with self.subTest(msg="test dimension of optimal point"): self.assertEqual(len(result.optimal_point[-1]), 8) with self.subTest(msg="assert cost_function_evals is set"): self.assertIsNotNone(result.cost_function_evals) with self.subTest(msg="assert optimizer_time is set"): self.assertIsNotNone(result.optimizer_time) def test_mismatching_num_qubits(self): """Ensuring circuit and operator mismatch is caught""" wavefunction = QuantumCircuit(1) optimizer = SLSQP(maxiter=50) vqd = VQD( k=1, ansatz=wavefunction, optimizer=optimizer, quantum_instance=self.statevector_simulator, ) with self.assertRaises(AlgorithmError): _ = vqd.compute_eigenvalues(operator=self.h2_op) @data( (MatrixExpectation(), 1), (AerPauliExpectation(), 1), (PauliExpectation(), 2), ) @unpack def test_construct_circuit(self, expectation, num_circuits): """Test construct circuits returns QuantumCircuits and the right number of them.""" try: wavefunction = EfficientSU2(2, reps=1) vqd = VQD(k=2, ansatz=wavefunction, expectation=expectation) params = [0] * wavefunction.num_parameters circuits = vqd.construct_circuit(parameter=params, operator=self.h2_op) self.assertEqual(len(circuits), num_circuits) for circuit in circuits: self.assertIsInstance(circuit, QuantumCircuit) except MissingOptionalLibraryError as ex: self.skipTest(str(ex)) return def test_missing_varform_params(self): """Test specifying a variational form with no parameters raises an error.""" circuit = QuantumCircuit(self.h2_op.num_qubits) vqd = VQD( k=1, ansatz=circuit, quantum_instance=BasicAer.get_backend("statevector_simulator")) with self.assertRaises(RuntimeError): vqd.compute_eigenvalues(operator=self.h2_op) def test_basic_aer_qasm(self): """Test the VQD on BasicAer's QASM simulator.""" optimizer = COBYLA(maxiter=1000) wavefunction = self.ry_wavefunction vqd = VQD( ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=self.qasm_simulator, ) # TODO benchmark this later. result = vqd.compute_eigenvalues(operator=self.h2_op) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=1) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_statevector(self): """Test VQD with Aer's statevector_simulator.""" backend = Aer.get_backend("aer_simulator_statevector") wavefunction = self.ry_wavefunction optimizer = L_BFGS_B() quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqd = VQD( k=2, ansatz=wavefunction, optimizer=optimizer, max_evals_grouped=1, quantum_instance=quantum_instance, ) result = vqd.compute_eigenvalues(operator=self.h2_op) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=2) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_qasm(self): """Test VQD with Aer's qasm_simulator.""" backend = Aer.get_backend("aer_simulator") optimizer = COBYLA(maxiter=1000) wavefunction = self.ry_wavefunction quantum_instance = QuantumInstance( backend, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqd = VQD( k=2, ansatz=wavefunction, optimizer=optimizer, expectation=PauliExpectation(), quantum_instance=quantum_instance, ) result = vqd.compute_eigenvalues(operator=self.h2_op) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=1) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_with_aer_qasm_snapshot_mode(self): """Test the VQD using Aer's qasm_simulator snapshot mode.""" backend = Aer.get_backend("aer_simulator") optimizer = COBYLA(maxiter=400) wavefunction = self.ryrz_wavefunction quantum_instance = QuantumInstance( backend, shots=100, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ) vqd = VQD( k=2, ansatz=wavefunction, optimizer=optimizer, expectation=AerPauliExpectation(), quantum_instance=quantum_instance, ) result = vqd.compute_eigenvalues(operator=self.test_op) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.test_results, decimal=1) def test_callback(self): """Test the callback on VQD.""" history = {"eval_count": [], "parameters": [], "mean": [], "std": []} def store_intermediate_result(eval_count, parameters, mean, std): history["eval_count"].append(eval_count) history["parameters"].append(parameters) history["mean"].append(mean) history["std"].append(std) optimizer = COBYLA(maxiter=3) wavefunction = self.ry_wavefunction vqd = VQD( ansatz=wavefunction, optimizer=optimizer, callback=store_intermediate_result, quantum_instance=self.qasm_simulator, ) vqd.compute_eigenvalues(operator=self.h2_op) self.assertTrue( all(isinstance(count, int) for count in history["eval_count"])) self.assertTrue( all(isinstance(mean, float) for mean in history["mean"])) self.assertTrue(all(isinstance(std, float) for std in history["std"])) for params in history["parameters"]: self.assertTrue(all(isinstance(param, float) for param in params)) def test_reuse(self): """Test re-using a VQD algorithm instance.""" vqd = VQD(k=1) with self.subTest(msg="assert running empty raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqd.compute_eigenvalues(operator=self.h2_op) ansatz = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz") vqd.ansatz = ansatz with self.subTest(msg="assert missing operator raises AlgorithmError"): with self.assertRaises(AlgorithmError): _ = vqd.compute_eigenvalues(operator=self.h2_op) vqd.expectation = MatrixExpectation() vqd.quantum_instance = self.statevector_simulator with self.subTest(msg="assert VQE works once all info is available"): result = vqd.compute_eigenvalues(operator=self.h2_op) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy, decimal=2) operator = PrimitiveOp( np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 2, 0], [0, 0, 0, 3]])) with self.subTest(msg="assert minimum eigensolver interface works"): result = vqd.compute_eigenvalues(operator=operator) self.assertAlmostEqual(result.eigenvalues.real[0], -1.0, places=5) def test_vqd_optimizer(self): """Test running same VQD twice to re-use optimizer, then switch optimizer""" vqd = VQD( k=2, optimizer=SLSQP(), quantum_instance=QuantumInstance( BasicAer.get_backend("statevector_simulator")), ) def run_check(): result = vqd.compute_eigenvalues(operator=self.h2_op) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=3) run_check() with self.subTest("Optimizer re-use"): run_check() with self.subTest("Optimizer replace"): vqd.optimizer = L_BFGS_B() run_check() @data(MatrixExpectation(), None) def test_backend_change(self, user_expectation): """Test that VQE works when backend changes.""" vqd = VQD( k=1, ansatz=TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz"), optimizer=SLSQP(maxiter=2), expectation=user_expectation, quantum_instance=BasicAer.get_backend("statevector_simulator"), ) result0 = vqd.compute_eigenvalues(operator=self.h2_op) if user_expectation is not None: with self.subTest("User expectation kept."): self.assertEqual(vqd.expectation, user_expectation) vqd.quantum_instance = BasicAer.get_backend("qasm_simulator") # works also if no expectation is set, since it will be determined automatically result1 = vqd.compute_eigenvalues(operator=self.h2_op) if user_expectation is not None: with self.subTest( "Change backend with user expectation, it is kept."): self.assertEqual(vqd.expectation, user_expectation) with self.subTest("Check results."): self.assertEqual(len(result0.optimal_point), len(result1.optimal_point)) def test_set_ansatz_to_none(self): """Tests that setting the ansatz to None results in the default behavior""" vqd = VQD( k=1, ansatz=self.ryrz_wavefunction, optimizer=L_BFGS_B(), quantum_instance=self.statevector_simulator, ) vqd.ansatz = None self.assertIsInstance(vqd.ansatz, RealAmplitudes) def test_set_optimizer_to_none(self): """Tests that setting the optimizer to None results in the default behavior""" vqd = VQD( k=1, ansatz=self.ryrz_wavefunction, optimizer=L_BFGS_B(), quantum_instance=self.statevector_simulator, ) vqd.optimizer = None self.assertIsInstance(vqd.optimizer, SLSQP) def test_aux_operators_list(self): """Test list-based aux_operators.""" wavefunction = self.ry_wavefunction vqd = VQD(k=2, ansatz=wavefunction, quantum_instance=self.statevector_simulator) # Start with an empty list result = vqd.compute_eigenvalues(self.h2_op, aux_operators=[]) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=2) self.assertIsNone(result.aux_operator_eigenvalues) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = [aux_op1, aux_op2] result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=2) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2, places=2) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0, places=2) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0) # Go again with additional None and zero operators extra_ops = [*aux_ops, None, 0] result = vqd.compute_eigenvalues(self.h2_op, aux_operators=extra_ops) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=2) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2, places=2) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0, places=2) self.assertEqual(result.aux_operator_eigenvalues[0][2][0], 0.0) self.assertEqual(result.aux_operator_eigenvalues[0][3][0], 0.0) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0) self.assertEqual(result.aux_operator_eigenvalues[0][3][1], 0.0) def test_aux_operators_dict(self): """Test dictionary compatibility of aux_operators""" wavefunction = self.ry_wavefunction vqd = VQD(ansatz=wavefunction, quantum_instance=self.statevector_simulator) # Start with an empty dictionary result = vqd.compute_eigenvalues(self.h2_op, aux_operators={}) np.testing.assert_array_almost_equal(result.eigenvalues.real, self.h2_energy_excited, decimal=2) self.assertIsNone(result.aux_operator_eigenvalues) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = {"aux_op1": aux_op1, "aux_op2": aux_op2} result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.eigenvalues), 2) self.assertEqual(len(result.eigenstates), 2) self.assertEqual(result.eigenvalues.dtype, np.complex128) self.assertAlmostEqual(result.eigenvalues[0], -1.85727503) self.assertEqual(len(result.aux_operator_eigenvalues), 2) self.assertEqual(len(result.aux_operator_eigenvalues[0]), 2) # expectation values self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op1"][0], 2, places=6) self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op2"][0], 0, places=1) # standard deviations self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op1"][1], 0.0) self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op2"][1], 0.0) # Go again with additional None and zero operators extra_ops = {**aux_ops, "None_operator": None, "zero_operator": 0} result = vqd.compute_eigenvalues(self.h2_op, aux_operators=extra_ops) self.assertEqual(len(result.eigenvalues), 2) self.assertEqual(len(result.eigenstates), 2) self.assertEqual(result.eigenvalues.dtype, np.complex128) self.assertAlmostEqual(result.eigenvalues[0], -1.85727503) self.assertEqual(len(result.aux_operator_eigenvalues), 2) self.assertEqual(len(result.aux_operator_eigenvalues[0]), 3) # expectation values self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op1"][0], 2, places=6) self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op2"][0], 0, places=6) self.assertEqual( result.aux_operator_eigenvalues[0]["zero_operator"][0], 0.0) self.assertTrue( "None_operator" not in result.aux_operator_eigenvalues[0].keys()) # standard deviations self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op1"][1], 0.0) self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["aux_op2"][1], 0.0) self.assertAlmostEqual( result.aux_operator_eigenvalues[0]["zero_operator"][1], 0.0) def test_aux_operator_std_dev_pauli(self): """Test non-zero standard deviations of aux operators with PauliExpectation.""" wavefunction = self.ry_wavefunction vqd = VQD( ansatz=wavefunction, expectation=PauliExpectation(), initial_point=[ 1.70256666, -5.34843975, -0.39542903, 5.99477786, -2.74374986, -4.85284669, 0.2442925, -1.51638917, ], optimizer=COBYLA(maxiter=0), quantum_instance=self.qasm_simulator, ) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = [aux_op1, aux_op2] result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=1) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0.0019531249999999445, places=1) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.015183867579396111, places=1) # Go again with additional None and zero operators aux_ops = [*aux_ops, None, 0] result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues[0]), 4) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=1) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0.0019531249999999445, places=1) self.assertEqual(result.aux_operator_eigenvalues[0][2][0], 0.0) self.assertEqual(result.aux_operator_eigenvalues[0][3][0], 0.0) # # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.01548658094658011, places=1) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][2][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][3][1], 0.0) @unittest.skipUnless(has_aer(), "qiskit-aer doesn't appear to be installed.") def test_aux_operator_std_dev_aer_pauli(self): """Test non-zero standard deviations of aux operators with AerPauliExpectation.""" wavefunction = self.ry_wavefunction vqd = VQD( ansatz=wavefunction, expectation=AerPauliExpectation(), optimizer=COBYLA(maxiter=0), quantum_instance=QuantumInstance( backend=Aer.get_backend("qasm_simulator"), shots=1, seed_simulator=algorithm_globals.random_seed, seed_transpiler=algorithm_globals.random_seed, ), ) # Go again with two auxiliary operators aux_op1 = PauliSumOp.from_list([("II", 2.0)]) aux_op2 = PauliSumOp.from_list([("II", 0.5), ("ZZ", 0.5), ("YY", 0.5), ("XX", -0.5)]) aux_ops = [aux_op1, aux_op2] result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues), 2) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=1) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0.6698863565455391, places=1) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0, places=6) # Go again with additional None and zero operators aux_ops = [*aux_ops, None, 0] result = vqd.compute_eigenvalues(self.h2_op, aux_operators=aux_ops) self.assertEqual(len(result.aux_operator_eigenvalues[-1]), 4) # expectation values self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][0], 2.0, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][0], 0.6036400943063891, places=6) self.assertEqual(result.aux_operator_eigenvalues[0][2][0], 0.0) self.assertEqual(result.aux_operator_eigenvalues[0][3][0], 0.0) # standard deviations self.assertAlmostEqual(result.aux_operator_eigenvalues[0][0][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][1][1], 0.0, places=6) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][2][1], 0.0) self.assertAlmostEqual(result.aux_operator_eigenvalues[0][3][1], 0.0)