def setUp(self): self.random_seed = 10598 self.shots = 8192 np.random.seed(self.random_seed) self.training_data = { 'A': np.asarray([[2.95309709, 2.51327412], [3.14159265, 4.08407045]]), 'B': np.asarray([[4.08407045, 2.26194671], [4.46106157, 2.38761042]]) } self.testing_data = { 'A': np.asarray([[3.83274304, 2.45044227]]), 'B': np.asarray([[3.89557489, 0.31415927]]) } self.ref_kernel_matrix_training = np.asarray( [[1., 0.85632324, 0.1184082, 0.36523438], [0.85632324, 1., 0.11352539, 0.45068359], [0.1184082, 0.11352539, 1., 0.6730957], [0.36523438, 0.45068359, 0.6730957, 1.]]) self.ref_kernel_matrix_testing = np.asarray( [[0.14892578, 0.18115234, 0.47631836, 0.14709473], [0.33239746, 0.3782959, 0.02270508, 0.16418457]]) self.ref_support_vectors = np.asarray([[2.95309709, 2.51327412], [3.14159265, 4.08407045], [4.08407045, 2.26194671], [4.46106157, 2.38761042]]) self.ref_alpha = np.asarray( [0.38038017, 1.46000306, 0.02371895, 1.81666428]) self.ref_bias = np.asarray([-0.03570662]) self.svm_input = SVMInput(self.training_data, self.testing_data)
def setUp(self): self.random_seed = 10598 self.training_data = {'A': np.asarray([[2.95309709, 2.51327412], [3.14159265, 4.08407045]]), 'B': np.asarray([[4.08407045, 2.26194671], [4.46106157, 2.38761042]])} self.testing_data = {'A': np.asarray([[3.83274304, 2.45044227]]), 'B': np.asarray([[3.89557489, 0.31415927]])} self.ref_opt_params = np.asarray([2.6985, 1.5935, 2.2456, -6.255, -4.3215, -5.41, -6.9215, 0.2656, 1.5701, -4.677, 2.6987, -11.7649, -2.3141, -2.7084, 0.0622, -0.1577]) self.ref_train_loss = 0.6294606017231916 self.svm_input = SVMInput(self.training_data, self.testing_data)
def setUp(self): super().setUp() self.random_seed = 10598 self.shots = 12000 np.random.seed(self.random_seed) self.training_data = { 'A': np.asarray([[2.95309709, 2.51327412], [3.14159265, 4.08407045]]), 'B': np.asarray([[4.08407045, 2.26194671], [4.46106157, 2.38761042]]) } self.testing_data = { 'A': np.asarray([[3.83274304, 2.45044227]]), 'B': np.asarray([[3.89557489, 0.31415927]]) } self.svm_input = SVMInput(self.training_data, self.testing_data)
def test_qsvm_kernel_binary_via_run_algorithm(self): training_input = { 'A': np.asarray([[0.6560706, 0.17605998], [0.14154948, 0.06201424], [0.80202323, 0.40582692], [0.46779595, 0.39946754], [0.57660199, 0.21821317]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [-0.30119743, -0.11221681], [-0.16479252, -0.08640519], [0.49156185, -0.3660534]]) } test_input = { 'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.08791134, 0.11515506], [0.45988094, 0.32854319], [0.53015085, 0.41539212]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [-0.17323832, -0.49535592], [0.14043268, -0.87869109], [-0.15046837, -0.47340207]]) } temp = [test_input[k] for k in test_input] total_array = np.concatenate(temp) params = { 'problem': { 'name': 'svm_classification', 'random_seed': self.random_seed }, 'backend': { 'shots': self.shots }, 'algorithm': { 'name': 'QSVM.Kernel' } } backend = Aer.get_backend('qasm_simulator') algo_input = SVMInput(training_input, test_input, total_array) result = run_algorithm(params, algo_input, backend=backend) self.assertEqual(result['testing_accuracy'], 0.6) self.assertEqual(result['predicted_classes'], ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'A'])
def setUp(self): super().setUp() self.random_seed = 10598 self.training_data = { 'A': np.asarray([[2.95309709, 2.51327412], [3.14159265, 4.08407045]]), 'B': np.asarray([[4.08407045, 2.26194671], [4.46106157, 2.38761042]]) } self.testing_data = { 'A': np.asarray([[3.83274304, 2.45044227]]), 'B': np.asarray([[3.89557489, 0.31415927]]) } self.ref_opt_params = np.array([ -0.09936191, -1.26202073, 1.30316646, 3.24053034, -0.50731743, -0.6853292, 2.57404557, 1.74873317, 1.62238446, -1.83326183, 4.48499251, 0.21433137, -1.76288916, -0.15767913, 1.86321388, 0.27216782 ]) self.ref_train_loss = 1.4088445273265953 self.svm_input = SVMInput(self.training_data, self.testing_data)
def test_classical_multiclass_one_against_all(self): training_input = { 'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.79687342, 0.26933706], [0.39016555, -0.08469916], [0.3994399, 0.13601573], [0.26752049, -0.03978988], [0.24026485, 0.01953518], [0.49490503, 0.17239737], [0.70171827, 0.5323737], [0.43221576, 0.42357294], [0.62864856, 0.45504447], [0.6259567, 0.30917324], [0.58272403, 0.20760754], [0.3938784, 0.17184466], [0.14154948, 0.06201424], [0.80202323, 0.40582692], [0.46779595, 0.39946754], [0.57660199, 0.21821317], [0.51044761, 0.03699459], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [-0.30119743, -0.11221681], [-0.16479252, -0.08640519], [-0.21808884, -0.56508327], [-0.14683258, -0.46528508], [-0.05888195, -0.51474852], [0.20517435, -0.66839091], [0.25475584, -0.21239966], [0.55194854, 0.02789679], [-0.11542951, -0.54157026], [0.44625538, -0.49485869], [-0.14609118, -0.60719757], [0.18121305, -0.1922198], [0.19283785, -0.31798925], [0.29626405, -0.54563098], [-0.39044304, -0.36527253], [-0.29432215, -0.43924164], [-0.40294517, -0.31381308], [0.49156185, -0.3660534]]), 'C': np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294], [-0.54323753, 0.67630888], [-0.57685569, -0.08515631], [-0.67765364, 0.19654347], [-0.62129115, 0.22223066], [-0.78040851, 0.65247848], [-0.50730279, 0.59898039], [-0.64275805, 0.63381998], [-0.72854201, 0.14151325], [-0.57004437, 0.12344874], [-0.55215973, 0.74331215], [-0.60916047, 0.52006917], [-0.23093745, 1.], [-0.84025337, 0.5564536], [-0.66952391, 0.57918859], [-0.67725082, 0.60439934], [-1., 0.23715261], [-0.62933025, 0.19055405], [-0.82139073, 0.29941512]]) } test_input = { 'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.08791134, 0.11515506], [0.45988094, 0.32854319], [0.53015085, 0.41539212], [0.5073321, 0.47346751], [0.71081819, 0.19202569], [1., 0.51698289], [0.630973, 0.19898666], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [-0.17323832, -0.49535592], [0.14043268, -0.87869109], [-0.15046837, -0.47340207], [-0.39600934, -0.21647957], [-0.394202, -0.44705385], [0.15243621, -0.36695163], [0.06195634, -0.23262325], [0.06183066, -0.53376975]]), 'C': np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162], [-0.52649891, 0.35265538], [-0.54345106, 0.13113995], [-0.57181448, 0.13594725], [-0.33713329, 0.05095243], [-0.65741384, 0.477976], [-0.79986067, 0.41733195], [-0.73856328, 0.80699537], [-0.66489165, 0.1181712]]) } temp = [test_input[k] for k in test_input] total_array = np.concatenate(temp) params = { 'problem': { 'name': 'svm_classification' }, 'algorithm': { 'name': 'SVM' }, 'multiclass_extension': { 'name': 'OneAgainstRest' } } algo_input = SVMInput(training_input, test_input, total_array) result = run_algorithm(params, algo_input) self.assertEqual(result['testing_accuracy'], 1.0) self.assertEqual(result['predicted_classes'], [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C', 'C' ])
def test_classical_binary(self): training_input = { 'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.79687342, 0.26933706], [0.39016555, -0.08469916], [0.3994399, 0.13601573], [0.26752049, -0.03978988], [0.24026485, 0.01953518], [0.49490503, 0.17239737], [0.70171827, 0.5323737], [0.43221576, 0.42357294], [0.62864856, 0.45504447], [0.6259567, 0.30917324], [0.58272403, 0.20760754], [0.3938784, 0.17184466], [0.14154948, 0.06201424], [0.80202323, 0.40582692], [0.46779595, 0.39946754], [0.57660199, 0.21821317], [0.51044761, 0.03699459], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [-0.30119743, -0.11221681], [-0.16479252, -0.08640519], [-0.21808884, -0.56508327], [-0.14683258, -0.46528508], [-0.05888195, -0.51474852], [0.20517435, -0.66839091], [0.25475584, -0.21239966], [0.55194854, 0.02789679], [-0.11542951, -0.54157026], [0.44625538, -0.49485869], [-0.14609118, -0.60719757], [0.18121305, -0.1922198], [0.19283785, -0.31798925], [0.29626405, -0.54563098], [-0.39044304, -0.36527253], [-0.29432215, -0.43924164], [-0.40294517, -0.31381308], [0.49156185, -0.3660534]]) } test_input = { 'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.08791134, 0.11515506], [0.45988094, 0.32854319], [0.53015085, 0.41539212], [0.5073321, 0.47346751], [0.71081819, 0.19202569], [1., 0.51698289], [0.630973, 0.19898666], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [-0.17323832, -0.49535592], [0.14043268, -0.87869109], [-0.15046837, -0.47340207], [-0.39600934, -0.21647957], [-0.394202, -0.44705385], [0.15243621, -0.36695163], [0.06195634, -0.23262325], [0.06183066, -0.53376975]]) } temp = [test_input[k] for k in test_input] total_array = np.concatenate(temp) params = { 'problem': { 'name': 'svm_classification' }, 'algorithm': { 'name': 'SVM', } } algo_input = SVMInput(training_input, test_input, total_array) result = run_algorithm(params, algo_input) self.assertEqual(result['testing_accuracy'], 1.0) self.assertEqual(result['predicted_classes'], [ 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B', 'B' ])
from qiskit_aqua.utils import split_dataset_to_data_and_labels from qiskit_aqua.input import SVMInput from qiskit_qcgpu_provider import QCGPUProvider from qiskit_aqua import run_algorithm n = 2 # How many features to use (dimensionality) training_dataset_size = 20 testing_dataset_size = 10 sample_Total, training_input, test_input, class_labels = breast_cancer(training_dataset_size, testing_dataset_size, n) datapoints, class_to_label = split_dataset_to_data_and_labels(test_input) print(class_to_label) params = { 'problem': {'name': 'svm_classification', 'random_seed': 10598}, 'algorithm': { 'name': 'QSVM.Kernel' }, 'backend': {'name': 'qasm_simulator', 'shots': 1024}, 'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2, 'entanglement': 'linear'} } backend = QCGPUProvider().get_backend('qasm_simulator') algo_input = SVMInput(training_input, test_input, datapoints[0]) %time result = run_algorithm(params, algo_input) %time result = run_algorithm(params, algo_input, backend=backend) print("ground truth: {}".format(datapoints[1])) print("prediction: {}".format(result['predicted_labels']))
temp = [test_input[k] for k in test_input] total_array = np.concatenate(temp) aqua_dict = { 'problem': { 'name': 'svm_classification' }, 'algorithm': { 'name': 'SVM' }, 'multiclass_extension': { 'name': 'AllPairs' } } algo_input = SVMInput(training_input, test_input, total_array) from qiskit.aqua import QiskitAqua aqua_obj = QiskitAqua(aqua_dict, algo_input) algo_obj = aqua_obj.quantum_algorithm result = aqua_obj.run() #run_algorithm(aqua_dict, algo_input) for k, v in result.items(): print("'{}' : {}".format(k, v)) # 6 to_predict = singleDataItem('', 'data.csv', [1, 2, 0, 0, 0, 0, 0, 1, 0], n=3) print(algo_obj.predict(to_predict)) # 2
def test_qsvm_kernel_multiclass_error_correcting_code(self): backend = get_aer_backend('qasm_simulator') training_input = { 'A': np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296], [0.8690704, 0.70847635]]), 'B': np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951], [0.49156185, -0.3660534]]), 'C': np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294], [-0.82139073, 0.29941512]]) } test_input = { 'A': np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544], [0.48142649, 0.15931707]]), 'B': np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828], [0.06183066, -0.53376975]]), 'C': np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162], [-0.66489165, 0.1181712]]) } total_array = np.concatenate( (test_input['A'], test_input['B'], test_input['C'])) params = { 'problem': { 'name': 'svm_classification', 'random_seed': self.random_seed }, 'algorithm': { 'name': 'QSVM.Kernel', }, 'backend': { 'shots': self.shots }, 'multiclass_extension': { 'name': 'ErrorCorrectingCode', 'code_size': 5 }, 'feature_map': { 'name': 'SecondOrderExpansion', 'depth': 2, 'entangler_map': { 0: [1] } } } algo_input = SVMInput(training_input, test_input, total_array) result = run_algorithm(params, algo_input, backend=backend) self.assertAlmostEqual(result['testing_accuracy'], 0.55555555, places=4, msg='Please ensure you are using C++ simulator') self.assertEqual(result['predicted_classes'], ['A', 'A', 'C', 'A', 'A', 'A', 'C', 'C', 'C'])