def run(self, input, output=None):
        if input is None:
            raise AquaChemistryError("Missing input.")

        self._parser = InputParser(input)
        self._parser.parse()
        driver_return = self._run_driver_from_parser(self._parser, False)
        if driver_return[0] == AquaChemistry._DRIVER_RUN_TO_HDF5:
            logger.info('No further process.')
            return {'printable': [driver_return[1]]}

        data = run_algorithm(driver_return[1], driver_return[2], True)
        if not isinstance(data, dict):
            raise AquaChemistryError(
                "Algorithm run result should be a dictionary")

        convert_json_to_dict(data)
        if logger.isEnabledFor(logging.DEBUG):
            logger.debug('Algorithm returned: {}'.format(
                pprint.pformat(data, indent=4)))

        lines, result = self._format_result(data)
        logger.info('Processing complete. Final result available')
        result['printable'] = lines

        if output is not None:
            with open(output, 'w') as f:
                for line in lines:
                    print(line, file=f)

        return result
    def test_vertex_cover_vqe(self):
        algorithm_cfg = {
            'name': 'VQE',
            'operator_mode': 'grouped_paulis',
            'batch_mode': True
        }

        optimizer_cfg = {'name': 'SPSA', 'max_trials': 200}

        var_form_cfg = {
            'name': 'RYRZ',
            'depth': 3,
        }

        params = {
            'problem': {
                'name': 'ising',
                'random_seed': 100
            },
            'algorithm': algorithm_cfg,
            'optimizer': optimizer_cfg,
            'variational_form': var_form_cfg
        }
        backend = get_aer_backend('qasm_simulator')
        result = run_algorithm(params, self.algo_input, backend=backend)
        x = vertexcover.sample_most_likely(len(self.w), result['eigvecs'][0])
        sol = vertexcover.get_graph_solution(x)
        oracle = self.brute_force()
        self.assertEqual(np.count_nonzero(sol), oracle)
Exemple #3
0
    def test_set_packing_vqe(self):
        algorithm_cfg = {
            'name': 'VQE',
            'operator_mode': 'grouped_paulis',
            'batch_mode': True
        }

        optimizer_cfg = {'name': 'SPSA', 'max_trials': 200}

        var_form_cfg = {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}

        params = {
            'problem': {
                'name': 'ising',
                'random_seed': 100
            },
            'algorithm': algorithm_cfg,
            'optimizer': optimizer_cfg,
            'variational_form': var_form_cfg
        }
        backend = get_aer_backend('qasm_simulator')
        result = run_algorithm(params, self.algo_input, backend=backend)
        x = setpacking.sample_most_likely(len(self.list_of_subsets),
                                          result['eigvecs'][0])
        ising_sol = setpacking.get_solution(x)
        oracle = self.brute_force()
        self.assertEqual(np.count_nonzero(ising_sol), oracle)
Exemple #4
0
    def test_graph_partition_vqe(self):
        algorithm_cfg = {
            'name': 'VQE',
            'operator_mode': 'matrix',
            'batch_mode': True
        }

        optimizer_cfg = {'name': 'SPSA', 'max_trials': 300}

        var_form_cfg = {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}

        params = {
            'problem': {
                'name': 'ising',
                'random_seed': 10598
            },
            'algorithm': algorithm_cfg,
            'optimizer': optimizer_cfg,
            'variational_form': var_form_cfg
        }
        backend = get_aer_backend('statevector_simulator')
        result = run_algorithm(params, self.algo_input, backend=backend)
        x = graphpartition.sample_most_likely(result['eigvecs'][0])
        # check against the oracle
        ising_sol = graphpartition.get_graph_solution(x)
        np.testing.assert_array_equal(ising_sol, [1, 0, 0, 1])
        oracle = self.brute_force()
        self.assertEqual(graphpartition.objective_value(x, self.w), oracle)
    def test_clique_vqe(self):
        algorithm_cfg = {
            'name': 'VQE',
            'operator_mode': 'matrix',
            'batch_mode': True
        }

        optimizer_cfg = {'name': 'COBYLA'}

        var_form_cfg = {'name': 'RY', 'depth': 5, 'entanglement': 'linear'}

        params = {
            'problem': {
                'name': 'ising',
                'random_seed': 10598
            },
            'algorithm': algorithm_cfg,
            'optimizer': optimizer_cfg,
            'variational_form': var_form_cfg
        }
        backend = get_aer_backend('statevector_simulator')
        result = run_algorithm(params, self.algo_input, backend=backend)
        x = clique.sample_most_likely(len(self.w), result['eigvecs'][0])
        ising_sol = clique.get_graph_solution(x)
        np.testing.assert_array_equal(ising_sol, [1, 1, 1, 1, 1])
        oracle = self.brute_force()
        self.assertEqual(clique.satisfy_or_not(ising_sol, self.w, self.K),
                         oracle)
Exemple #6
0
    def test_vqe_caching_via_run_algorithm(self, backend, caching,
                                           skip_qobj_deepcopy,
                                           skip_validation):
        params_caching = {
            'algorithm': {
                'name': 'VQE'
            },
            'problem': {
                'name': 'energy',
                'random_seed': 50,
                'circuit_caching': caching,
                'skip_qobj_deepcopy': skip_qobj_deepcopy,
                'skip_qobj_validation': skip_validation,
                'circuit_cache_file': None,
            },
            'backend': {
                'name': backend,
                'shots': 1000
            },
        }
        result_caching = run_algorithm(params_caching, self.algo_input)

        self.assertAlmostEqual(result_caching['energy'],
                               self.reference_vqe_result[backend]['energy'])

        np.testing.assert_array_almost_equal(
            self.reference_vqe_result[backend]['eigvals'],
            result_caching['eigvals'], 5)
        np.testing.assert_array_almost_equal(
            self.reference_vqe_result[backend]['opt_params'],
            result_caching['opt_params'], 5)
        self.assertIn('eval_count', result_caching)
        self.assertIn('eval_time', result_caching)
Exemple #7
0
    def test_end2end_h2(self, name, optimizer, backend, mode, shots):

        optimizer_params = {'name': optimizer}
        if optimizer == 'COBYLA':
            optimizer_params['maxiter'] = 1000
        elif optimizer == 'SPSA':
            optimizer_params['max_trials'] = 2000
            optimizer_params['save_steps'] = 25

        algo_params = {
            'problem': {
                'name': 'energy'
            },
            'backend': {
                'name': backend,
                'shots': shots
            },
            'algorithm': {
                'name': 'VQE',
                'operator_mode': mode
            },
            'optimizer': optimizer_params,
            'variational_form': {
                'name': 'RYRZ',
                'depth': 3,
                'entanglement': 'full'
            }
        }

        results = run_algorithm(algo_params, self.algo_input)
        self.assertAlmostEqual(results['energy'],
                               self.reference_energy,
                               places=6)
Exemple #8
0
 def test_ee_via_run_algorithm(self):
     params = {'algorithm': {'name': 'ExactEigensolver'}}
     result = run_algorithm(params, self.algo_input)
     self.assertAlmostEqual(result['energy'], -1.85727503)
     np.testing.assert_array_almost_equal(result['energies'], [-1.85727503])
     np.testing.assert_array_almost_equal(result['eigvals'],
                                          [-1.85727503 + 0j])
    def run_algorithm_from_json(self, params, output=None, backend=None):
        """
        Runs the Aqua Chemistry experiment from json dictionary

        Args:
            params (dictionary): Input data
            output (filename):  Output data
            backend (BaseBackend): backend object

        Returns:
            result dictionary
        """
        ret = run_algorithm(params, None, True, backend)
        if not isinstance(ret, dict):
            raise AquaChemistryError(
                "Algorithm run result should be a dictionary")

        convert_json_to_dict(ret)
        if logger.isEnabledFor(logging.DEBUG):
            logger.debug('Algorithm returned: {}'.format(
                pprint.pformat(ret, indent=4)))

        print('Output:')
        if isinstance(ret, dict):
            for k, v in ret.items():
                print("'{}': {}".format(k, v))
        else:
            print(ret)

        return ret
Exemple #10
0
    def test_partition_vqe(self):
        algorithm_cfg = {
            'name': 'VQE',
            'operator_mode': 'grouped_paulis',
            'batch_mode': True

        }

        optimizer_cfg = {
            'name': 'SPSA',
            'max_trials': 200
        }

        var_form_cfg = {
            'name': 'RY',
            'depth': 5,
            'entanglement': 'linear'
        }

        params = {
            'problem': {'name': 'ising', 'random_seed': 100},
            'algorithm': algorithm_cfg,
            'optimizer': optimizer_cfg,
            'variational_form': var_form_cfg
        }
        backend = get_aer_backend('qasm_simulator')
        result = run_algorithm(params, self.algo_input, backend=backend)
        x = partition.sample_most_likely(result['eigvecs'][0])
        self.assertNotEqual(x[0], x[1])
        self.assertNotEqual(x[2], x[1])  # hardcoded oracle
Exemple #11
0
 def test_vqe_optimizers(self, name, places, batch_mode):
     params = {
         'algorithm': {'name': 'VQE', 'batch_mode': batch_mode},
         'optimizer': {'name': name},
         'backend': {'name': 'statevector_simulator', 'shots': 1}
     }
     result = run_algorithm(params, self.algo_input)
     self.assertAlmostEqual(result['energy'], -1.85727503, places=places)
Exemple #12
0
    def test_partition(self):
        params = {
            'problem': {'name': 'ising'},
            'algorithm': {'name': 'ExactEigensolver'}
        }
        result = run_algorithm(params, self.algo_input)

        x = partition.sample_most_likely(result['eigvecs'][0])
        np.testing.assert_array_equal(x, [0, 1, 0])
Exemple #13
0
 def test_vqe_var_forms(self, name, places):
     backend = Aer.get_backend('statevector_simulator')
     params = {
         'algorithm': {'name': 'VQE'},
         'variational_form': {'name': name},
         'backend': {'shots': 1}
     }
     result = run_algorithm(params, self.algo_input, backend=backend)
     self.assertAlmostEqual(result['energy'], -1.85727503, places=places)
Exemple #14
0
 def test_ee_via_run_algorithm_k4(self):
     params = {
         'algorithm': {'name': 'ExactEigensolver', 'k': 4}
     }
     result = run_algorithm(params, self.algo_input)
     self.assertAlmostEqual(result['energy'], -1.85727503)
     self.assertEqual(len(result['eigvals']), 4)
     self.assertEqual(len(result['eigvecs']), 4)
     np.testing.assert_array_almost_equal(result['energies'], [-1.85727503, -1.24458455, -0.88272215, -0.22491125])
Exemple #15
0
    def test_classical_binary(self):
        training_input = {
            'A':
            np.asarray([
                [0.6560706, 0.17605998],
                [0.14154948, 0.06201424],
                [0.80202323, 0.40582692],
                [0.46779595, 0.39946754],
                [0.57660199, 0.21821317],
            ]),
            'B':
            np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951],
                        [-0.30119743, -0.11221681], [-0.16479252, -0.08640519],
                        [0.49156185, -0.3660534]])
        }

        test_input = {
            'A':
            np.asarray([
                [0.57483139, 0.47120732],
                [0.48372348, 0.25438544],
                [0.08791134, 0.11515506],
                [0.45988094, 0.32854319],
                [0.53015085, 0.41539212],
            ]),
            'B':
            np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828],
                        [-0.17323832, -0.49535592], [0.14043268, -0.87869109],
                        [-0.15046837, -0.47340207]])
        }

        temp = [test_input[k] for k in test_input]
        total_array = np.concatenate(temp)

        params = {
            'problem': {
                'name': 'svm_classification',
                'random_seed': self.random_seed
            },
            'backend': {
                'name': 'local_qasm_simulator',
                'shots': 1000
            },
            'algorithm': {
                'name': 'QSVM.Kernel'
            }
        }

        algo_input = get_input_instance('SVMInput')
        algo_input.training_dataset = training_input
        algo_input.test_dataset = test_input
        algo_input.datapoints = total_array
        result = run_algorithm(params, algo_input)
        self.assertEqual(result['test_success_ratio'], 0.6)
        self.assertEqual(result['predicted_labels'],
                         ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'A'])
def main_algorithm():
    try:
        from qiskit_aqua._logging import get_logging_level, build_logging_config, set_logging_config
        from qiskit_aqua_cmd import Preferences
        from qiskit_aqua import run_algorithm
        from qiskit_aqua.utils import convert_json_to_dict
        parser = argparse.ArgumentParser(
            description='Qiskit Aqua Command Line Tool')
        parser.add_argument('input',
                            metavar='input',
                            help='Algorithm JSON input file')
        parser.add_argument('-jo',
                            metavar='output',
                            help='Algorithm JSON output file name',
                            required=False)

        args = parser.parse_args()

        # update logging setting with latest external packages
        preferences = Preferences()
        logging_level = logging.INFO
        if preferences.get_logging_config() is not None:
            set_logging_config(preferences.get_logging_config())
            logging_level = get_logging_level()

        preferences.set_logging_config(build_logging_config(logging_level))
        preferences.save()

        set_logging_config(preferences.get_logging_config())

        params = None
        with open(args.input) as json_file:
            params = json.load(json_file)

        ret = run_algorithm(params, None, True)

        if args.jo is not None:
            with open(args.jo, 'w') as f:
                print('{}'.format(ret), file=f)
        else:
            convert_json_to_dict(ret)
            print(
                '\n\n--------------------------------- R E S U L T ------------------------------------\n'
            )
            if isinstance(ret, dict):
                for k, v in ret.items():
                    print("'{}': {}".format(k, v))
            else:
                print(ret)
    finally:
        global _ROOT
        if _ROOT is not None:
            _ROOT.destroy()
            _ROOT = None
Exemple #17
0
    def test_classical_multiclass_error_correcting_code(self):
        training_input = {
            'A':
            np.asarray([[0.6560706, 0.17605998], [0.25776033, 0.47628296],
                        [0.8690704, 0.70847635]]),
            'B':
            np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951],
                        [0.49156185, -0.3660534]]),
            'C':
            np.asarray([[-0.68088231, 0.46824423], [-0.56167659, 0.65270294],
                        [-0.82139073, 0.29941512]])
        }

        test_input = {
            'A':
            np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544],
                        [0.48142649, 0.15931707]]),
            'B':
            np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828],
                        [0.06183066, -0.53376975]]),
            'C':
            np.asarray([[-0.74561108, 0.27047295], [-0.69942965, 0.11885162],
                        [-0.66489165, 0.1181712]])
        }

        temp = [test_input[k] for k in test_input]
        total_array = np.concatenate(temp)

        params = {
            'problem': {
                'name': 'svm_classification',
                'random_seed': self.random_seed
            },
            'algorithm': {
                'name': 'QSVM.Kernel',
                'multiclass_alg': 'error_correcting_code'
            },
            'backend': {
                'name': 'local_qasm_simulator_py',
                'shots': 1024
            }
        }

        algo_input = get_input_instance('SVMInput')
        algo_input.training_dataset = training_input
        algo_input.test_dataset = test_input
        algo_input.datapoints = total_array

        result = run_algorithm(params, algo_input)
        self.assertEqual(result['test_success_ratio'], 0.5555555555555556)
        self.assertEqual(result['predicted_labels'],
                         ['A', 'A', 'C', 'A', 'A', 'A', 'C', 'C', 'C'])
    def test_run_algorithm(self):
        filepath = self._get_resource_path('ExactEigensolver.json')
        params = None
        with open(filepath) as json_file:
            params = json.load(json_file)

        dict_ret = None
        try:
            dict_ret = run_algorithm(params, None, False)
        except Exception as e:
            self.fail(str(e))

        self.assertIsInstance(dict_ret, dict)
Exemple #19
0
 def test_vqe_optimzers(self, name, places):
     params = {
         'algorithm': {
             'name': 'VQE'
         },
         'optimizer': {
             'name': name
         },
         'backend': {
             'name': 'local_statevector_simulator'
         }
     }
     result = run_algorithm(params, self.algo_input)
     self.assertAlmostEqual(result['energy'], -1.85727503, places=places)
Exemple #20
0
 def test_vqe_via_run_algorithm(self):
     params = {
         'algorithm': {'name': 'VQE'},
         'backend': {'name': 'statevector_simulator', 'shots': 1},
     }
     result = run_algorithm(params, self.algo_input)
     self.assertAlmostEqual(result['energy'], -1.85727503)
     np.testing.assert_array_almost_equal(result['eigvals'], [-1.85727503], 5)
     np.testing.assert_array_almost_equal(result['opt_params'],
                                          [-0.58294401, -1.86141794, -1.97209632, -0.54796022,
                                           -0.46945572, 2.60114794, -1.15637845,  1.40498879,
                                           1.14479635, -0.48416694, -0.66608349, -1.1367579,
                                           -2.67097002, 3.10214631, 3.10000313, 0.37235089], 5)
     self.assertIn('eval_count', result)
     self.assertIn('eval_time', result)
 def test_clique(self):
     params = {
         'problem': {
             'name': 'ising'
         },
         'algorithm': {
             'name': 'ExactEigensolver'
         }
     }
     result = run_algorithm(params, self.algo_input)
     x = clique.sample_most_likely(len(self.w), result['eigvecs'][0])
     ising_sol = clique.get_graph_solution(x)
     np.testing.assert_array_equal(ising_sol, [1, 1, 1, 1, 1])
     oracle = self.brute_force()
     self.assertEqual(clique.satisfy_or_not(ising_sol, self.w, self.K),
                      oracle)
Exemple #22
0
    def test_qsvm_variational_via_run_algorithm(self):
        np.random.seed(self.random_seed)
        params = {
            'problem': {'name': 'svm_classification', 'random_seed': self.random_seed},
            'algorithm': {'name': 'QSVM.Variational'},
            'backend': {'name': 'qasm_simulator', 'shots': 1024},
            'optimizer': {'name': 'SPSA', 'max_trials': 10, 'save_steps': 1},
            'variational_form': {'name': 'RYRZ', 'depth': 3},
            'feature_map': {'name': 'SecondOrderExpansion', 'depth': 2}
        }
        result = run_algorithm(params, self.svm_input)

        np.testing.assert_array_almost_equal(result['opt_params'], self.ref_opt_params, decimal=4)
        np.testing.assert_array_almost_equal(result['training_loss'], self.ref_train_loss, decimal=8)

        self.assertEqual(result['testing_accuracy'], 0.5)
    def test_vertex_cover(self):
        params = {
            'problem': {
                'name': 'ising'
            },
            'algorithm': {
                'name': 'ExactEigensolver'
            }
        }
        result = run_algorithm(params, self.algo_input)

        x = vertexcover.sample_most_likely(len(self.w), result['eigvecs'][0])
        sol = vertexcover.get_graph_solution(x)
        np.testing.assert_array_equal(sol, [0, 1, 1])
        oracle = self.brute_force()
        self.assertEqual(np.count_nonzero(sol), oracle)
Exemple #24
0
 def test_graph_partition(self):
     params = {
         'problem': {
             'name': 'ising'
         },
         'algorithm': {
             'name': 'ExactEigensolver'
         }
     }
     result = run_algorithm(params, self.algo_input)
     x = graphpartition.sample_most_likely(result['eigvecs'][0])
     # check against the oracle
     ising_sol = graphpartition.get_graph_solution(x)
     np.testing.assert_array_equal(ising_sol, [0, 1, 0, 1])
     oracle = self.brute_force()
     self.assertEqual(graphpartition.objective_value(x, self.w), oracle)
Exemple #25
0
 def test_set_packing(self):
     params = {
         'problem': {
             'name': 'ising'
         },
         'algorithm': {
             'name': 'ExactEigensolver'
         }
     }
     result = run_algorithm(params, self.algo_input)
     x = setpacking.sample_most_likely(len(self.list_of_subsets),
                                       result['eigvecs'][0])
     ising_sol = setpacking.get_solution(x)
     np.testing.assert_array_equal(ising_sol, [0, 1, 1])
     oracle = self.brute_force()
     self.assertEqual(np.count_nonzero(ising_sol), oracle)
Exemple #26
0
 def test_cplex_ising_via_run_algorithm(self):
     params = {
         'problem': {
             'name': 'ising'
         },
         'algorithm': {
             'name': 'CPLEX.Ising',
             'display': 0
         }
     }
     result = run_algorithm(params, self.algo_input)
     self.assertEqual(result['energy'], -20.5)
     x_dict = result['x_sol']
     x = np.array([x_dict[i] for i in sorted(x_dict.keys())])
     np.testing.assert_array_equal(maxcut.get_graph_solution(x),
                                   [1, 0, 1, 1])
     self.assertEqual(maxcut.maxcut_value(x, self.w), 24)
Exemple #27
0
    def test_qsvm_kernel_binary_via_run_algorithm(self):

        training_input = {
            'A':
            np.asarray([[0.6560706, 0.17605998], [0.14154948, 0.06201424],
                        [0.80202323, 0.40582692], [0.46779595, 0.39946754],
                        [0.57660199, 0.21821317]]),
            'B':
            np.asarray([[0.38857596, -0.33775802], [0.49946978, -0.48727951],
                        [-0.30119743, -0.11221681], [-0.16479252, -0.08640519],
                        [0.49156185, -0.3660534]])
        }

        test_input = {
            'A':
            np.asarray([[0.57483139, 0.47120732], [0.48372348, 0.25438544],
                        [0.08791134, 0.11515506], [0.45988094, 0.32854319],
                        [0.53015085, 0.41539212]]),
            'B':
            np.asarray([[-0.06048935, -0.48345293], [-0.01065613, -0.33910828],
                        [-0.17323832, -0.49535592], [0.14043268, -0.87869109],
                        [-0.15046837, -0.47340207]])
        }

        temp = [test_input[k] for k in test_input]
        total_array = np.concatenate(temp)

        params = {
            'problem': {
                'name': 'svm_classification',
                'random_seed': self.random_seed
            },
            'backend': {
                'shots': self.shots
            },
            'algorithm': {
                'name': 'QSVM.Kernel'
            }
        }
        backend = Aer.get_backend('qasm_simulator')
        algo_input = SVMInput(training_input, test_input, total_array)
        result = run_algorithm(params, algo_input, backend=backend)
        self.assertEqual(result['testing_accuracy'], 0.6)
        self.assertEqual(result['predicted_classes'],
                         ['A', 'A', 'A', 'A', 'A', 'A', 'B', 'A', 'A', 'A'])
Exemple #28
0
    def test_svm_qkernel_via_run_algorithm(self):

        params = {
            'problem': {'name': 'svm_classification', 'random_seed': self.random_seed},
            'algorithm': {'name': 'SVM_QKernel'},
            'backend': {'name': 'local_qasm_simulator', 'shots': 1024}
        }
        result = run_algorithm(params, self.svm_input)

        np.testing.assert_array_almost_equal(
            result['kernel_matrix_training'], self.ref_kernel_matrix_training, decimal=4)
        np.testing.assert_array_almost_equal(
            result['kernel_matrix_testing'], self.ref_kernel_matrix_testing, decimal=4)

        self.assertEqual(len(result['svm']['support_vectors']), 4)
        np.testing.assert_array_almost_equal(
            result['svm']['support_vectors'], self.ref_support_vectors, decimal=4)

        self.assertEqual(result['test_success_ratio'], 0.5)
    def run_algorithm_from_json(self, params, output=None):
        ret = run_algorithm(params, None, True)
        if not isinstance(ret, dict):
            raise AquaChemistryError(
                "Algorithm run result should be a dictionary")

        convert_json_to_dict(ret)
        if logger.isEnabledFor(logging.DEBUG):
            logger.debug('Algorithm returned: {}'.format(
                pprint.pformat(ret, indent=4)))

        print('Output:')
        if isinstance(ret, dict):
            for k, v in ret.items():
                print("'{}': {}".format(k, v))
        else:
            print(ret)

        return ret
Exemple #30
0
def classical_svm(train_input, test_input, class_labels, n):
    temp = [test_input[k] for k in test_input]
    total_array = np.concatenate(temp)

    # Select parameters based on number of classes in data
    if len(class_labels) > 2:
        aqua_dict = {
            'problem': {
                'name': 'svm_classification',
                'random_seed': 100
            },
            'algorithm': {
                'name': 'SVM'
            },
            'multiclass_extension': {
                'name': 'AllPairs'
            }
        }
    else:
        aqua_dict = {
            'problem': {
                'name': 'svm_classification',
                'random_seed': 100
            },
            'algorithm': {
                'name': 'SVM'
            }
        }

    algo_input = svminput
    algo_input.training_dataset = train_input
    algo_input.test_dataset = test_input
    algo_input.datapoints = total_array

    # Run the classical SVM algorithm
    result = run_algorithm(aqua_dict, algo_input)

    # Print model values
    #     for k,v in result.items():
    #         print("'{}' : {}".format(k, v))

    return result