def test_quadratic_program_to_qubo_inequality_to_penalty(self):
        """Test QuadraticProgramToQubo, passing inequality pattern"""

        op = QuadraticProgram()
        conv = QuadraticProgramToQubo()
        op.binary_var(name="x")
        op.binary_var(name="y")

        # Linear constraints
        linear_constraint = {"x": 1, "y": 1}
        op.linear_constraint(linear_constraint, Constraint.Sense.GE, 1,
                             "P(1-x-y+xy)")

        conv.penalty = 1
        constant = 1
        linear = {"x": -conv.penalty, "y": -conv.penalty}
        quadratic = {("x", "y"): conv.penalty}
        op2 = conv.convert(op)
        cnst = op2.objective.constant
        ldct = op2.objective.linear.to_dict(use_name=True)
        qdct = op2.objective.quadratic.to_dict(use_name=True)
        self.assertEqual(cnst, constant)
        self.assertEqual(ldct, linear)
        self.assertEqual(qdct, quadratic)
        self.assertEqual(op2.get_num_linear_constraints(), 0)
    def test_converter_list(self):
        """Test converters list"""
        # Input.
        model = Model()
        x_0 = model.binary_var(name='x0')
        x_1 = model.binary_var(name='x1')
        model.maximize(-x_0+2*x_1)
        op = QuadraticProgram()
        op.from_docplex(model)

        # Get the optimum key and value.
        n_iter = 8
        # a single converter.
        qp2qubo = QuadraticProgramToQubo()
        gmf = GroverOptimizer(4, num_iterations=n_iter, quantum_instance=self.sv_simulator,
                              converters=qp2qubo)
        results = gmf.solve(op)
        self.validate_results(op, results)
        # a list of converters
        ineq2eq = InequalityToEquality()
        int2bin = IntegerToBinary()
        penalize = LinearEqualityToPenalty()
        converters = [ineq2eq, int2bin, penalize]
        gmf = GroverOptimizer(4, num_iterations=n_iter, quantum_instance=self.sv_simulator,
                              converters=converters)
        results = gmf.solve(op)
        self.validate_results(op, results)
        # invalid converters
        with self.assertRaises(TypeError):
            invalid = [qp2qubo, "invalid converter"]
            GroverOptimizer(4, num_iterations=n_iter,
                            quantum_instance=self.sv_simulator,
                            converters=invalid)
    def test_converter_list(self):
        """Test converter list"""
        op = QuadraticProgram()
        op.integer_var(0, 3, "x")
        op.binary_var('y')

        op.maximize(linear={'x': 1, 'y': 2})
        op.linear_constraint(linear={'x': 1, 'y': 1}, sense='LE', rhs=3, name='xy_leq')
        min_eigen_solver = NumPyMinimumEigensolver()
        # a single converter
        qp2qubo = QuadraticProgramToQubo()
        min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver, converters=qp2qubo)
        result = min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        # a list of converters
        ineq2eq = InequalityToEquality()
        int2bin = IntegerToBinary()
        penalize = LinearEqualityToPenalty()
        converters = [ineq2eq, int2bin, penalize]
        min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver, converters=converters)
        result = min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        with self.assertRaises(TypeError):
            invalid = [qp2qubo, "invalid converter"]
            MinimumEigenOptimizer(min_eigen_solver,
                                  converters=invalid)
Exemple #4
0
def convert_qubo(qubo, linear, quadratic, penalty_multiplier=1):
    max_coeff = max(max(linear.values()), max(quadratic.values()))
    penalty = np.floor(max_coeff * penalty_multiplier)
    converter = QuadraticProgramToQubo(penalty=penalty)
    qubo = converter.convert(qubo)
    obj = qubo.objective
    linear = obj.linear.to_array()
    max_linear = np.amax(linear)
    quadratic = obj.quadratic.to_array()
    max_quadratic = np.amax(quadratic)
    max_coeff = max(max_linear, max_quadratic)
    qubo.objective.quadratic._coefficients /= max_coeff
    qubo.objective.linear._coefficients /= max_coeff
    qubo_constant = qubo.objective._constant
    qubo.objective._constant = 0
    return qubo, max_coeff, qubo_constant
    def test_converter_list(self):
        """Test converter list"""
        op = QuadraticProgram()
        op.integer_var(0, 3, "x")
        op.binary_var("y")

        op.maximize(linear={"x": 1, "y": 2})
        op.linear_constraint(linear={
            "y": 1,
            "x": 1
        },
                             sense="LE",
                             rhs=3,
                             name="xy_leq")

        # construct minimum eigen optimizer
        min_eigen_solver = NumPyMinimumEigensolver()
        min_eigen_optimizer = MinimumEigenOptimizer(min_eigen_solver)
        # a single converter
        qp2qubo = QuadraticProgramToQubo()
        recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer(
            min_eigen_optimizer, min_num_vars=2, converters=qp2qubo)
        result = recursive_min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        # a list of converters
        ineq2eq = InequalityToEquality()
        int2bin = IntegerToBinary()
        penalize = LinearEqualityToPenalty()
        converters = [ineq2eq, int2bin, penalize]
        recursive_min_eigen_optimizer = RecursiveMinimumEigenOptimizer(
            min_eigen_optimizer, min_num_vars=2, converters=converters)
        result = recursive_min_eigen_optimizer.solve(op)
        self.assertEqual(result.fval, 4)
        # invalid converters
        with self.assertRaises(TypeError):
            invalid = [qp2qubo, "invalid converter"]
            RecursiveMinimumEigenOptimizer(min_eigen_optimizer,
                                           min_num_vars=2,
                                           converters=invalid)