Exemple #1
0
def test_qutip_fail_due_sync_with_e_ops():
    """ test is kernel.run fails whenever e_ops
        are given and sync_state is True """
    kernel = QutipKernel(ReducedSystem([
        0,
        0,
        0,
        0,
        2,
        0,
        0,
        0,
        4,
    ], [
        0,
        1,
        0,
        1,
        0,
        1,
        0,
        1,
        0,
    ]),
                         n_e_ops=1)
    kernel.compile()
    kernel.sync(state=[0, 0, 0, 0, 1, 0, 0, 0, 0],
                t_bath=2,
                y_0=1,
                e_ops=[[1, 0, 0, 0, 0, 0, 0, 0, 0]])
    try:
        kernel.run(np.arange(0, .1, 0.005), sync_state=True)
    except ValueError:
        pass
Exemple #2
0
def test_qutip_run_stateless():
    kernel = QutipKernel(
        ReducedSystem([
            0,
            0,
            0,
            0,
            2,
            0,
            0,
            0,
            4,
        ], [
            0,
            1,
            0,
            1,
            0,
            1,
            0,
            1,
            0,
        ]))
    kernel.compile()
    kernel.sync(state=[0, 0, 0, 0, 1, 0, 0, 0, 0], t_bath=2, y_0=1)
    # test if both are the same (no sync)
    (_, fstate_a, _, _) = kernel.run(np.arange(0, .1, 0.005))
    (_, fstate_b, _, _) = kernel.run(np.arange(0, .1, 0.005))
    assert np.all(fstate_a[0][-1] == fstate_b[0][-1])
def test_yt_hosci_qutip():
    """
    harmonic oscillator with time dependent damping
    coefficient y(t) compared to qutip example.
    """
    dimH = 10
    y, A, wl = 0.25, 0.75, 20

    a = destroy(dimH)
    H = a.dag() * a
    psi0 = basis(dimH, 9)
    yt_coeff = lambda t, a: np.sqrt(y) * (1 + A * np.sin(wl * t))
    c_ops = [[a, yt_coeff]]
    times = np.linspace(0, 1, 10000)

    # qutip solve
    output = mesolve(H, psi0, times, c_ops, [a.dag() * a])

    # qoptical solve
    result = opmesolve_cl_expect(
        tg=(0, 1, .0001),
        reduced_system=ReducedSystem(H.full(), dipole=(a + a.dag()).full()),
        t_bath=0,
        y_0=1,
        rho0=(psi0 * psi0.dag()).full(),
        Oexpect=(a.dag() * a).full(),
        yt_coeff=yt_coeff,
    )

    # XXX
    # - layout the result such that it is more compareable...
    assert_allclose(output.expect[0][1:5], result[1:5, 0], **QOP.TEST_TOLS)
    assert_allclose(output.expect[0][-2], result[-1, 0], **QOP.TEST_TOLS)
    assert_allclose(output.expect[0][-3], result[-2, 0], **QOP.TEST_TOLS)
def test_two_level_T_driving():
    """ two level system at finite temperature with
        time dependent hamiltonian compared to reference
        implementation.
        """
    REF_TOL = 0.0001
    OMEGA = 2.0
    tr = (0, 1.0, 0.001)
    y_0 = 0.5
    t_bath = 1.0
    h0 = [0, 0, 0, OMEGA]
    states = [[1.0, 0.0, 0.0, 0.0]] * 3
    param = np.array([(0.0, 0.0), (1.0, 2.0), (1.0, 2.5)],
                     dtype=np.dtype([
                         ('A', np.float32),
                         ('b', np.float32),
                     ]))

    kernel = OpenCLKernel(ReducedSystem(h0, [
        0,
        1,
        1,
        0,
    ]))
    kernel.t_sysparam = param.dtype
    kernel.ht_coeff = [lambda t, p: p['A'] * np.sin(p['b'] * t / np.pi)]
    kernel.compile()

    kernel.sync(state=states,
                y_0=y_0,
                t_bath=t_bath,
                sysparam=param,
                htl=[[1, 1, 1, 1]])
    tf, rhof = kernel.reader_tfinal_rho(kernel.run(tr, steps_chunk_size=1234))

    # test final time
    assert np.isclose(tf, tr[1])

    # reference result
    (_, fstate, _, _) = opmesolve([h0, [[1, 1, 1, 1], kernel.ht_coeff[0]]],
                                  states,
                                  t_bath=t_bath,
                                  y_0=y_0,
                                  tw=[OMEGA],
                                  tr=tr,
                                  kernel="QuTip",
                                  args=param)

    # test against reference
    assert_allclose(rhof[0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(rhof[1], fstate[1], **QOP.TEST_TOLS)
    assert_allclose(rhof[2], fstate[2], **QOP.TEST_TOLS)
def test_yt_hosci_qutip_data_struct():
    """
    harmonic oscillator with time dependent damping
    coefficient y(t) compared to qutip example.

    here a numpy array is used to represent parametrization
    """
    dimH = 10
    data = np.array([
        (0.25, 0.75, 20),
    ],
                    dtype=np.dtype([
                        ('y', QOP.T_FLOAT),
                        ('A', QOP.T_FLOAT),
                        ('wl', QOP.T_FLOAT),
                    ]))
    a = destroy(dimH)
    H = a.dag() * a
    psi0 = basis(dimH, 9)
    yt_coeff = lambda t, arg: np.sqrt(arg['y']) * (1 + arg['A'] * np.sin(arg[
        'wl'] * t))
    c_ops = [[a, yt_coeff]]
    times = np.linspace(0, 1, 10000)

    # qutip solve
    output = mesolve(H,
                     psi0,
                     times,
                     c_ops, [a.dag() * a],
                     args={
                         'y': 0.25,
                         'A': 0.75,
                         'wl': 20
                     })

    # qoptical solve
    result = opmesolve_cl_expect(tg=(0, 1, .0001),
                                 reduced_system=ReducedSystem(
                                     H.full(), dipole=(a + a.dag()).full()),
                                 t_bath=0,
                                 y_0=1,
                                 rho0=(psi0 * psi0.dag()).full(),
                                 Oexpect=(a.dag() * a).full(),
                                 yt_coeff=yt_coeff,
                                 params=data)

    # XXX
    # - layout the result such that it is more compareable...
    assert_allclose(output.expect[0][1:5], result[1:5, 0], **QOP.TEST_TOLS)
    assert_allclose(output.expect[0][-2], result[-1, 0], **QOP.TEST_TOLS)
    assert_allclose(output.expect[0][-3], result[-2, 0], **QOP.TEST_TOLS)
Exemple #6
0
def test_qutip_kernel_simple_htl():
    def coeff(t, args):
        return 1.0

    kernel = QutipKernel(ReducedSystem([
        0,
        0,
        0,
        0,
        2,
        0,
        0,
        0,
        4,
    ], [
        0,
        1,
        0,
        1,
        0,
        1,
        0,
        1,
        0,
    ]),
                         n_htl=1,
                         n_e_ops=2)
    kernel.compile()
    kernel.sync(
        state=[
            0,
            0,
            0,
            0,
            1,
            0,
            0,
            0,
            0,
        ],
        t_bath=2,
        y_0=1,
        htl=[[[0, 1, 0, 1, 0, 1, 0, 1, 0], coeff]],

        # expectation values Tr(0.5*rho) = 0.5, Tr(0.8*rho) = 0.8
        e_ops=[[.5, 0, 0, 0, .5, 0, 0, 0, .5], [.8, 0, 0, 0, .8, 0, 0, 0, .8]])

    tlist = np.arange(0, 2, 0.005)
    (_, _, _, texpect) = kernel.run(tlist)
    assert np.all(texpect[0, 0] == 0.5)
    assert np.all(texpect[0, 1] == 0.8)
def test_two_level_TZero():
    """ most simple dissipative case.
        two level system with at T=0:

          d rho / dt = -i[H,rho] + y_0 \\Omega^3 D[A(\\Omega)]
    """
    REF_TOL = 0.0001
    OMEGA = 2.0
    tr = (0, 1.0, 0.001)
    y_0 = [0.5, 0.5, 0.25]
    h0 = [0, 0, 0, OMEGA]
    states = [
        # T=inf
        [0.5, 0.0, 0.0, 0.5],
        # T=0
        [1.0, 0.0, 0.0, 0.0],
        # T=t + coherence
        [0.75, 0.5, 0.5, 0.25],
    ]
    kernel = OpenCLKernel(ReducedSystem(h0, [
        0,
        1,
        1,
        0,
    ]))
    kernel.compile()
    kernel.sync(state=states, y_0=y_0, t_bath=0)
    tf, rhof = kernel.reader_tfinal_rho(kernel.run(tr))

    # test final time
    assert np.isclose(tf, tr[1])

    # reference result
    (_, fstate, _, _) = opmesolve(h0,
                                  states,
                                  t_bath=0,
                                  y_0=y_0,
                                  tw=[OMEGA],
                                  tr=tr,
                                  kernel="QuTip")

    # test against reference
    assert_allclose(rhof[0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(rhof[1], fstate[1], **QOP.TEST_TOLS)
    assert_allclose(rhof[2], fstate[2], **QOP.TEST_TOLS)
Exemple #8
0
def test_qutip_kernel_nontrivial_basis():
    """ this test aims to test a system
        where h0 is non-diagonal.
    """
    h0 = np.array([-1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 4, 1, 0, 0, 1, 12]).reshape(
        (4, 4))
    ev, st = eigh(h0)
    T = 0.5
    # partition sum
    Z = np.exp(-1.0 / T * ev[0]) \
      + np.exp(-1.0 / T * ev[1]) \
      + np.exp(-1.0 / T * ev[2]) \
      + np.exp(-1.0 / T * ev[3])
    # expected thermal state
    thermal_state = np.exp(-1.0 / T * ev[0]) / Z * ketbra(st, 0) \
                  + np.exp(-1.0 / T * ev[1]) / Z * ketbra(st, 1) \
                  + np.exp(-1.0 / T * ev[2]) / Z * ketbra(st, 2) \
                  + np.exp(-1.0 / T * ev[3]) / Z * ketbra(st, 3)
    # initial state
    rho0 = [
        1,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
    ]

    kernel = QutipKernel(ReducedSystem(h0))
    kernel.compile()
    kernel.sync(state=rho0, t_bath=T, y_0=3)
    (_, fstate, _, _) = kernel.run(np.arange(0, 0.5, 0.001))
    assert np.all(np.abs(fstate.real - thermal_state) < EQ_COMPARE_TOL)
def test_dork():
    """ three level system at finite temperature with
        time dependent hamiltonian compared to reference
        implementation.
        """
    h0 = np.diag([
        1,
        2,
        3,
        7,
        9,
        15,
        27,
        30,
    ])
    rs = ReducedSystem(h0)
    kernel = OpenCLKernel(rs)
    kernel.compile()
    kernel.sync(state=rs.thermal_state(0), t_bath=1, y_0=1)

    rs = ReducedSystem(h0).create_rs_dipole_ladder()
    kernel = OpenCLKernel(rs)
    kernel.compile()
    kernel.sync(state=rs.thermal_state(0), t_bath=1, y_0=1)
Exemple #10
0
def test_qutip_kernel_single_frequency_transtions():
    """ in this test we setup a three state
        system where the energy levels are equidistant
        with deltaE = w0

        e3  ------------ 2 * w0

        e1  ------------ 1 * w0

        e0  ------------ 0

        Only jumps with w0 are allowed:
            e3 -> e2
            e2 -> e1
    """
    # like hosci
    T2, w0 = 1, 1.4
    h0 = [
        (0 * w0),
        0,
        0,
        0,
        (1 * w0),
        0,
        0,
        0,
        (2 * w0),
    ]

    # create system, only w0 transitions are allowed
    system = ReducedSystem(h0, [0, 1, 0, 1, 0, 1, 0, 1, 0])

    # create & compile qutip kernel
    kernel = QutipKernel(system)
    kernel.compile()

    # set two different initial states and two differen
    # bath temperatures. the global damping y0 is the
    # same for both systems.
    kernel.sync(
        state=[[0, 0, 0, 0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0]],
        t_bath=[0, T2],
        y_0=2.5,
    )

    # the first state should go into groundstate
    expected_state_1 = np.array([
        1,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
    ]).reshape((3, 3))

    # the second state should converge to a thermal state at T2
    Z = np.exp(-1.0 / T2 * 0 * w0) \
      + np.exp(-1.0 / T2 * 1 * w0) \
      + np.exp(-1.0 / T2 * 2 * w0)
    expected_state_2 = np.diag([
        1.0 / Z * np.exp(-1.0 / T2 * 0 * w0),
        1.0 / Z * np.exp(-1.0 / T2 * 1 * w0),
        1.0 / Z * np.exp(-1.0 / T2 * 2 * w0),
    ]).reshape((3, 3))

    # we test if the kernel keeps track of the state
    # properly (sync_state=True). Executing a time interval
    # multiple times should be the same as perform
    # the integration once: V(t)V(t)...V(t) = V(t+t+...+t)
    required_steps = None
    times = np.arange(0.0, 0.1, 0.0025)
    for i in range(25):
        kernel.run(times, sync_state=True)
        close_1 = np.all(
            np.abs(kernel.state[0] - expected_state_1) < EQ_COMPARE_TOL)
        close_2 = np.all(
            np.abs(kernel.state[1] - expected_state_2) < EQ_COMPARE_TOL)
        if close_1 and close_2:
            required_steps = i
            break

    assert required_steps is not None, 'did not converge...'
    assert required_steps > 1, 'we want more than one step, please decrease y_0...'
def test_von_neumann():
    """ integrate von Neumann equation to test the following:

        - reduced system with no transitions => von Neumann
        - evolve multiple states
        - all states at all times t should be recorded
          and be available in `result.tstate`
        - we test some physical properties of the results
          i)  desity operator properties at all t
          ii) behavior of coherent elements (rotatation at certain w_ij)

        """

    PRECISION_DT_ANGLE = 6
    tr = (0.0, 13.37, 0.01)

    h0 = [
        0,
        0,
        0,
        0,
        0,
        1,
        0,
        0,
        0,
        0,
        3,
        0,
        0,
        0,
        0,
        5.5,
    ]

    # dipole coupling = 0 => no dissipative dynamics
    system = ReducedSystem(h0, np.zeros_like(h0))
    kernel = OpenCLKernel(system)
    kernel.compile()

    # we confige a state whith 3 coherent elements.
    # we expect that the diagonal elements are constant
    # in time while the coherent elements rotate at
    # the transition frrquency, meaning
    #
    #     d arg(<0|rho(t)|1>) * dt d = (w_1 - w_0) * 0.1 = 0.1
    #     d arg(<0|rho(t)|2>) * dt d = (w_2 - w_0) * 0.1 = 0.3
    #     d arg(<2|rho(t)|3>) * dt d = (w_3 - w_2) * 0.1 = 0.25
    #
    expect_w10, expect_w20, expect_w32 = 1.0, 3.0, 2.5
    ground_state = [
        0.7, 0.25, 0.5, 0.0, 0.25, 0.2, 0.0, 0.0, 0.5, 0.0, 0.0, 0.3, 0.0, 0.0,
        0.3, 0.1
    ]

    # this groundstate should be stationary.
    gs2 = [
        1,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
        0,
    ]

    # note that for y_0=0.0 the dissipator would vanish as well.
    kernel.sync(state=[ground_state, gs2], t_bath=0, y_0=1.0)
    tlist, ts = kernel.reader_rho_t(kernel.run(tr))

    # test times
    assert_allclose(np.arange(tr[0], tr[1] + tr[2], tr[2]), tlist)

    assert tstate_rho_hermitian(ts)
    assert tstate_rho_trace(1.0, ts)

    # test diagonal elements, r_00(t+dt) - r_00(t) = 0 for all t
    assert np.allclose(ts[:, 0, 0, 0][:-1] - ts[:, 0, 0, 0][1:], 0)
    assert np.allclose(ts[:, 0, 1, 1][:-1] - ts[:, 0, 1, 1][1:], 0)
    assert np.allclose(ts[:, 0, 2, 2][:-1] - ts[:, 0, 2, 2][1:], 0)
    assert np.allclose(ts[:, 0, 3, 3][:-1] - ts[:, 0, 3, 3][1:], 0)

    # test rotation of coherent elements by
    # calulating(r_01(t+dt) - r_01(t))/dt
    r10 = np.round(
        (np.angle(ts[:, 0, 1, 0][:-1]) - np.angle(ts[:, 0, 1, 0][1:])) % np.pi,
        PRECISION_DT_ANGLE)
    assert np.all(r10 == expect_w10 * tr[2])

    r20 = np.round(
        (np.angle(ts[:, 0, 2, 0][:-1]) - np.angle(ts[:, 0, 2, 0][1:])) % np.pi,
        PRECISION_DT_ANGLE)
    assert np.all(r20 == expect_w20 * tr[2])

    r32 = np.round(
        (np.angle(ts[:, 0, 3, 2][:-1]) - np.angle(ts[:, 0, 3, 2][1:])) % np.pi,
        PRECISION_DT_ANGLE)
    assert np.all(r32 == expect_w32 * tr[2])
def test_four_level_T():
    """ four level system at finite temperature T

        - all possible jumps
        - no dipole
        - eigenbase
        - compare optimized and non-optimized vs. reference
        """
    REF_TOL = 0.0001
    tr = (0, 1.0, 0.001)
    t_bath = [1.0, 0.5]
    y_0 = [1.3, 2.4]

    h0 = [
        0.0,
        0,
        0,
        0,
        0,
        1.0,
        0,
        0,
        0,
        0,
        2.0,
        0,
        0,
        0,
        0,
        6.0,
    ]

    states = [
        [
            # T=0
            1.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
        ],
        [
            # some weird state
            0.4,
            0.4,
            0.6,
            0.3,
            0.4,
            0.3,
            0.2,
            0.2,
            0.6,
            0.2,
            0.1,
            0.6,
            0.3,
            0.2,
            0.6,
            0.2,
        ]
    ]

    sys = ReducedSystem(h0)
    kernel = OpenCLKernel(sys)
    kernel.optimize_jumps = True
    kernel.compile()
    kernel.sync(state=states, y_0=y_0, t_bath=t_bath)
    tf, rhof = kernel.reader_tfinal_rho(kernel.run(tr, steps_chunk_size=1111))

    # test final time
    assert np.isclose(tf, tr[1])

    kernel2 = OpenCLKernel(sys)
    kernel2.optimize_jumps = False
    kernel2.compile()
    kernel2.sync(state=states, y_0=y_0, t_bath=t_bath)
    tf, rhof2 = kernel.reader_tfinal_rho(kernel2.run(tr))

    # test final time
    assert np.isclose(tf, tr[1])

    # reference result
    (_, fstate, _, _) = opmesolve(h0,
                                  states,
                                  t_bath=t_bath,
                                  y_0=y_0,
                                  tr=tr,
                                  kernel="QuTip")

    # test against reference
    assert_allclose(rhof[0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(rhof[1], fstate[1], **QOP.TEST_TOLS)
    assert_allclose(rhof2[0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(rhof2[1], fstate[1], **QOP.TEST_TOLS)
def test_time_gatter():
    """ in this test two debug buffers are injected into the
        OpenCL kernel:
        1. Time Buffer   -  to read out internal time at each time step
        2. Index Buffer  -  to read out internal output index at each time step.
        we compare the values, chunkwise, against expected times and indices.
        Also, the run() generator yields a triplet which we also test
        in this test.
        """
    rs = ReducedSystem([0, 0, 0, 1], [0, 1, 1, 0])
    kernel = OpenCLKernel(rs)
    kernel.c_debug_hook_1 = "time_gatter[2*n+get_global_id(0)] = t + 1337 * get_global_id(0);\n" \
        + "index_gatter[2*n+get_global_id(0)] = __out_len * n + __in_offset;\n"

    # we want 5 steps & two systems, we use a buffer of shape (7, 2) to check
    # whether the kernel overflow the 5 expected items.
    h_time = np.zeros((7, 2), dtype=np.float32)
    b_time = kernel.arr_to_buf(h_time)
    h_gatter = np.zeros((7, 2), dtype=np.int32)
    b_gatter = kernel.arr_to_buf(h_gatter)

    # hook & compile
    kernel.cl_debug_buffers = [
        ('__global float *time_gatter', b_time),
        ('__global int *index_gatter', b_gatter),
    ]
    kernel.compile()

    # syn
    kernel.sync(state=[1, 0, 0, 0], y_0=1, t_bath=[1, 1])

    expected_cl_tlists = [
        np.array([.000, .001, .002, .003, 0.004]),
        np.array([.005, .006, .007, .008, 0.009]),
        np.array([.010, .011, .012]),
    ]

    expected_tlists = [
        np.array([.001, .002, .003, .004, 0.005]),
        np.array([.006, .007, .008, .009, 0.010]),
        np.array([.011, .012, .013]),
    ]

    dt = 0.001
    # the first index (0) is allready occupied by the initial state
    # given at kernel.sync we therefore expect the idx to start from 1.
    current_index = 1
    run_kwargs = {'steps_chunk_size': 5, 'parallel': False}
    for j, (idx, tlist,
            rho_eb) in enumerate(kernel.run((0, 0.013, dt), **run_kwargs)):
        # -- test index
        assert idx[0] == current_index
        i1 = idx[1] - idx[0]
        current_index += i1 + 1

        # -- test time used inside the kernel
        # note: we measure the time before increasing it, thus
        #  we expect a lattice like 0, 1, 2, 3 while the yielde
        #  tlist should be 1, 2, 3, 4 as tlist corresponds to the
        #  time at which the state rho_eb is.
        expected_tlist_cl = expected_cl_tlists[j]
        l = len(expected_tlist_cl)
        cl.enqueue_copy(kernel.queue, h_time, b_time)
        assert_allclose(expected_tlist_cl, h_time[:l, 0])
        assert_allclose(expected_tlist_cl + 1337, h_time[:l, 1])
        # test that buffer did not overflow
        assert_allclose(np.zeros(7 - l), h_time[l:, 0])
        assert_allclose(np.zeros(7 - l), h_time[l:, 1])
        # reset time buffer
        h_time = np.zeros_like(h_time)
        b_time = kernel.arr_to_buf(h_time)
        kernel.cl_debug_buffers[0] = (kernel.cl_debug_buffers[0], b_time)

        # -- test time yielded from python
        expected_tlist = expected_tlists[j]
        l = len(expected_tlist)
        assert_allclose(expected_tlist, tlist)

        # -- test index gatter
        cl.enqueue_copy(kernel.queue, h_gatter, b_gatter)
        expected_gatter = np.arange(l * 2).reshape((l, 2)) * 4
        assert_allclose(expected_gatter, h_gatter[0:len(expected_gatter)])
        expected_empty_gatter = np.zeros((7 - l) * 2).reshape((7 - l, 2))
        assert_allclose(expected_empty_gatter, h_gatter[len(expected_gatter):])

        # reset gatter buffer
        h_gatter = np.zeros_like(h_gatter)
        b_gatter = kernel.arr_to_buf(h_gatter)
        kernel.cl_debug_buffers[1] = (kernel.cl_debug_buffers[1], b_gatter)

        # test rho_eb
        assert rho_eb.shape[0] == l
def test_three_level_T():
    """ three level system at finite temperature.

        - two jumps (1*Omega, 2*Omega)
        - no dipole
        - eigenbase
        - compare optimized vs. reference

        """
    REF_TOL = 0.0001
    OMEGA = 2.0
    tr = (0, 0.5, 0.001)
    tw = [OMEGA, 2 * OMEGA]
    t_bath = 1.0
    h0 = [
        0.0,
        0,
        0,
        0,
        OMEGA,
        0,
        0,
        0,
        2 * OMEGA,
    ]
    states = [
        [
            # T=inf
            1.0 / 3.0,
            0.0,
            0.0,
            0.0,
            1.0 / 3.0,
            0.0,
            0.0,
            0.0,
            1.0 / 3.0
        ],
        [
            # T=0
            1.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0
        ],
        [
            # T=t + coherence
            0.4,
            0.4 + 0.25j,
            0.6 - 0.5j,
            0.4 - 0.25j,
            0.2,
            -0.2j,
            0.6 + 0.5j,
            0.2j,
            0.4
        ]
    ]

    sys = ReducedSystem(h0, [
        0,
        1,
        1,
        1,
        0,
        1,
        1,
        1,
        0,
    ])

    kernel = OpenCLKernel(sys)
    assert kernel.optimize_jumps
    kernel.compile()
    kernel.sync(state=states, y_0=1.0, t_bath=t_bath)
    tf, rhof = kernel.reader_tfinal_rho(kernel.run(tr))

    # test final time
    assert np.isclose(tf, tr[1])

    # reference result
    (_, fstate, _, _) = opmesolve(h0,
                                  states,
                                  t_bath=t_bath,
                                  y_0=1.0,
                                  tw=tw,
                                  tr=tr,
                                  kernel="QuTip")

    # test against reference
    assert_allclose(rhof[0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(rhof[1], fstate[1], **QOP.TEST_TOLS)
    assert_allclose(rhof[2], fstate[2], **QOP.TEST_TOLS)
def test_two_level_T():
    """ most simple dissipative case at finite temperature:
        two level system at T > 0:

          d rho / dt = -i[H,rho] + y_0 * \Omega^3 * (1 + N(\\Omega)) * D[A(\\Omega)]
                                 + y_0 * \Omega^3 * N(\\Omega) * D[A^\\dagger(\\Omega)]

        - single jump
        - no dipole
        - eigenbase
        - compared optimized vs. reference
    """
    REF_TOL = 0.0001
    OMEGA = 2.0
    tr = (0, 1.0, 0.001)
    y_0 = 0.5
    t_bath = 1.0

    h0 = [0, 0, 0, OMEGA]
    states = [
        [
            # T=inf
            0.5,
            0.2 - 0.4j,
            0.2 + 0.4j,
            0.5
        ],
        [
            # T=0
            1.0,
            0.0,
            0.0,
            0.0
        ]
    ]

    kernel = OpenCLKernel(ReducedSystem(h0, [
        0,
        1,
        1,
        0,
    ]))
    kernel.compile()
    kernel.sync(state=states, y_0=y_0, t_bath=t_bath)
    tf, rhof = kernel.reader_tfinal_rho(kernel.run(tr))

    # test final time
    assert np.isclose(tf, tr[1])

    # reference result
    (_, fstate, _, _) = opmesolve(h0,
                                  states,
                                  t_bath=t_bath,
                                  y_0=y_0,
                                  tw=[OMEGA],
                                  tr=tr,
                                  kernel="QuTip")

    # test against reference
    assert_allclose(rhof[0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(rhof[1], fstate[1], **QOP.TEST_TOLS)
def test_three_level_TZero():
    """ two different annihilation processes A(Omega), A(2*Omega) at T=0:

        - two possible jumps
        - no dipole
        - eigenbase
        - compared optimized vs. reference
        """
    REF_TOL = 0.0001
    OMEGA = 2.0
    tr = (0, 0.1, 0.001)
    tw = [OMEGA, 2 * OMEGA]

    h0 = [
        0.0,
        0,
        0,
        0,
        OMEGA,
        0,
        0,
        0,
        2 * OMEGA,
    ]

    states = [
        [
            # T=inf
            1.0 / 3.0,
            0.0,
            0.0,
            0.0,
            1.0 / 3.0,
            0.0,
            0.0,
            0.0,
            1.0 / 3.0
        ],
        [
            # T=0
            1.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0,
            0.0
        ],
        [
            # T=t + coherence
            0.4,
            0.4,
            0.6,
            0.4,
            0.2,
            0.2,
            0.6,
            0.2,
            0.4
        ]
    ]
    sys = ReducedSystem(h0, [
        0,
        1,
        1,
        1,
        0,
        1,
        1,
        1,
        0,
    ])
    kernel = OpenCLKernel(sys)
    kernel.compile()
    kernel.sync(state=states, y_0=1.0, t_bath=0)
    tf, rhof = kernel.reader_tfinal_rho(kernel.run(tr))

    # test final time
    assert np.isclose(tf, tr[1])

    # reference result
    (_, fstate, _, _) = opmesolve(h0,
                                  states,
                                  t_bath=0,
                                  y_0=1.0,
                                  tw=tw,
                                  tr=tr,
                                  kernel="QuTip")

    # test against reference
    assert_allclose(rhof[0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(rhof[1], fstate[1], **QOP.TEST_TOLS)
    assert_allclose(rhof[2], fstate[2], **QOP.TEST_TOLS)
Exemple #17
0
def test_complex_dipole_complex():
    """ test whether complex components in dipole
        operator are interpreted correctly.
        """

    # system parameters
    dimH = 5
    t_bath = [0.0, 0.2, 0.5, 0.6]
    y_0 = 0.15
    Omega = 1.4
    tr = (0, 16.52, 0.005)
    state0 = np.zeros(dimH**2).reshape((dimH, dimH))
    state0[0, 0] = 1

    # operators
    Oa = op_a(dimH)
    Oad = Oa.conj().T
    On = Oad @ Oa
    Ox = Oa + Oad

    # non-complex dipole
    dipole = [
        0,
        2 + 1j,
        0,
        3 - np.pi * 0.1j,
        0,
        2 - 1j,
        0,
        -1j,
        0,
        4,
        0,
        1j,
        0,
        5,
        0,
        3 + np.pi * 0.1j,
        0,
        5,
        0,
        6j,
        0,
        4,
        0,
        -6j,
        0,
    ]
    # reduced system
    rs = ReducedSystem(Omega * On, dipole=dipole)

    # -- Run with QuTip
    kernel = QutipKernel(rs)
    kernel.compile()
    kernel.sync(t_bath=t_bath, y_0=y_0, state=[state0] * 4)
    tlist = time_gatter(*tr)
    (_, _, tstate, _) = kernel.run(tlist)

    # -- Run with OpenCL kernel
    kernelCL = OpenCLKernel(rs)
    kernelCL.compile()
    kernelCL.sync(t_bath=t_bath, y_0=y_0, state=state0.flatten())
    tlist_cl, resultCL = kernelCL.reader_rho_t(
        kernelCL.run(tr, steps_chunk_size=132))

    # -- compare all states at all times
    assert_allclose(tlist, tlist_cl)
    assert_allclose(resultCL, tstate, atol=1e-5, rtol=1e-7)
def test_von_neumann_basis():
    """ we integrate a system which is not provided in eigenbase.
        two states are tests:

            1. stationary (and pure) state |i><i|
            2. some non stationary state

        test checks basic integrator and density operator
        properties and compares the result against QuTip
        reference solver.
        """
    REF_TOL = 0.0001
    tr = (0, 1, 0.001)
    h0 = [
        1,
        1.5,
        0,
        1.5,
        1.42,
        3,
        0,
        3,
        2.11,
    ]

    ev, s = np.linalg.eigh(np.array(h0).reshape((3, 3)))
    s = s.T
    rho1 = np.outer(s[0].conj().T, s[0])
    rho2 = np.array([0.5, 0, 0, 0, 0.5, 0, 0, 0, 0],
                    dtype=np.complex64).reshape((3, 3))
    states = [rho1, rho2]

    system = ReducedSystem(h0)
    kernel = OpenCLKernel(system)
    kernel.compile()

    # we archive von Neumann by setting global damping to y_0=
    # which leads to supression of dissipative terms
    kernel.sync(state=states, y_0=0, t_bath=0)
    tlist, ts = kernel.reader_rho_t(kernel.run(tr))

    # test times
    assert_allclose(np.arange(tr[0], tr[1] + tr[2], tr[2]), tlist)

    # test density operator
    assert tstate_rho_hermitian(ts[1:2])
    assert tstate_rho_trace(1.0, ts)

    # test stationary state
    assert_allclose(ts[-1][0], rho1, **QOP.TEST_TOLS)

    # test against reference
    (_, fstate, _, _) = opmesolve(h0,
                                  states,
                                  0,
                                  0,
                                  tw=[],
                                  tr=tr,
                                  kernel="QuTip")
    assert_allclose(ts[-1][0], fstate[0], **QOP.TEST_TOLS)
    assert_allclose(ts[-1][1], fstate[1], **QOP.TEST_TOLS)
Exemple #19
0
def test_thermalization():
    """ in this test we setup a harmonic oscillator

            H = \Omega n

        such that it couples thru x operator

            D = x = a^\dagger + a

        and check whether a list of ground states
        thermalize correctly.

        Testes Kernels:
        - QuTip
        - OpenCL
        """

    # system parameters
    dimH = 5
    t_bath = [0.0, 0.2, 1.0, 1.5]
    y_0 = 1.25
    Omega = 1.0
    tr = (0, 4.00, 0.005)
    state0 = np.zeros(dimH**2, dtype=np.complex64).reshape((dimH, dimH))
    state0[0, 0] = 1
    Ee = [Omega * k for k in range(dimH)]
    tlist = time_gatter(tr[0], tr[1], tr[2])

    # operators
    Oa = op_a(dimH)
    Oad = Oa.conj().T
    On = Oad @ Oa
    Ox = Oa + Oad

    # reduced system
    rs = ReducedSystem(Omega * On)

    # the expected mean occupation numbers
    #
    #     <E> = Tr(H rho_th) = Tr(H sum_i p_i e^(beta*Omega*i))
    #
    expected_En = [
        sum(e_i * p_i for (e_i, p_i) in zip(Ee, thermal_dist(Ee, t)))
        for t in t_bath
    ]

    # -- Run with QuTip
    kernel = QutipKernel(rs)
    kernel.compile()
    kernel.sync(t_bath=t_bath, y_0=y_0, state=[state0] * 4)
    tlist = time_gatter(tr[0], tr[1], tr[2])
    (_, _, tstate, _) = kernel.run(tlist)

    # test whether states have thermalized
    En = np.trace(tstate[-1, :] @ On, axis1=1, axis2=2).real
    assert np.allclose(expected_En, En, **QOP.TEST_TOLS)

    # -- Run with OpenCL kernel
    kernelCL = OpenCLKernel(rs)
    kernelCL.compile()
    kernelCL.sync(t_bath=t_bath, y_0=y_0, state=state0.flatten())
    tlist_cl, resultCL = kernelCL.reader_rho_t(kernelCL.run(tr))

    # test whether states have thermalized
    assert_allclose(tlist, tlist_cl)
    EnCL = np.trace(resultCL[-1, :] @ On, axis1=1, axis2=2).real
    assert np.allclose(expected_En, EnCL,
                       **QOP.TEST_TOLS), "{}".format(expected_En - EnCL)
Exemple #20
0
def test_jump():
    """ test whether the qutip kernel is able to read
        jumps from system and creates the expected list of
        lindblad operators """
    # 1->0, 2->1    @ w=1
    #
    # 0   1   0   0
    # 0   0   1   0
    # 0   0   0   0
    # 0   0   0   0
    #
    # 2->0, 3->2    @ w=2
    #
    # 0   0   1   0
    # 0   0   0   0
    # 0   0   0   1
    # 0   0   0   0
    #
    # 4->1          @ w=3
    # 0   0   0   0
    # 0   0   0   1
    # ...
    #
    # 4->0          @ w=4
    # 0   0   0   1
    # 0   0   0   0
    # ...
    h0 = np.diag([0, 1, 2, 4])
    kernel = QutipKernel(ReducedSystem(h0))
    kernel.compile()
    lindblads = kernel.q_L

    assert 3.0 == lindblads[0][0]
    assert np.all(
        np.array([
            [0, 0, 0, 0],
            [0, 0, 0, 1],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
        ]) == lindblads[0][1].full())

    assert 4.0 == lindblads[1][0]
    assert np.all(
        np.array([
            [0, 0, 0, 1],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
        ]) == lindblads[1][1].full())

    assert 1.0 == lindblads[2][0]
    assert np.all(
        np.array([
            [0, 1, 0, 0],
            [0, 0, 1, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 0],
        ]) == lindblads[2][1].full())

    assert 2.0 == lindblads[3][0]
    assert np.all(
        np.array([
            [0, 0, 1, 0],
            [0, 0, 0, 0],
            [0, 0, 0, 1],
            [0, 0, 0, 0],
        ]) == lindblads[3][1].full())