import qpms import numpy as np import os, sys, warnings, math from scipy import interpolate nx = None s3 = math.sqrt(3) # specifikace T-matice zde cdn = c / math.sqrt(epsilon_b) TMatrices_orig, freqs_orig, freqs_weirdunits_orig, lMaxTM = qpms.loadScuffTMatrices( TMatrix_file) lMax = lMaxTM if pargs.lMax: lMax = pargs.lMax if pargs.lMax else lMaxTM my, ny = qpms.get_mn_y(lMax) nelem = len(my) if pargs.lMax: #force commandline specified lMax TMatrices_orig = TMatrices_orig[..., 0:nelem, :, 0:nelem] TMatrices = np.array( np.broadcast_to(TMatrices_orig[:, nx, :, :, :, :], (len(freqs_orig), 2, 2, nelem, 2, nelem))) #TMatrices[:,:,:,:,:,ny==3] *= factor13inc #TMatrices[:,:,:,ny==3,:,:] *= factor13scat xfl = qpms.xflip_tyty(lMax) yfl = qpms.yflip_tyty(lMax) zfl = qpms.zflip_tyty(lMax) c2rot = qpms.apply_matrix_left(qpms.yflip_yy(3), qpms.xflip_yy(3), -1)
def testRandom1to1(self): # The "maximum" argument of the Bessel's functions, i.e. maximum wave number times the distance, # for the "locally strongly varying fields" maxx = 10 rfailtol = 0.01 # how much of the randomized test fail proportion will be tolerated lMax = 50 # To which order we decompose the waves lMax_outgoing = 4 # To which order we try the outgoing waves rtol = 1e-5 # relative required precision atol = 1. # absolute tolerance, does not really play a role nsamples = 4 # frequency samples per order of magnitude and test npoints = 15 # points to evaluate per frequency and center ncentres = 3 # number of spherical coordinate centres between which the translations are to be made maxxd = 2000 # the center position standard deviation failcounter = 0 passcounter = 0 my, ny = qpms.get_mn_y(lMax) nelem_full = len(my) nelem_out = lMax_outgoing * (lMax_outgoing + 2) for oom in lengthOrdersOfMagnitude: centres = oom * maxxd * np.random.randn(ncentres, 3) ksizs = np.random.randn(nsamples) for ksiz in ksizs: for i in range(ncentres): # "source" Rs = centres[i] testr = oom * maxx * np.random.randn(npoints, 3) for j in range(ncentres): # "destination" if j == i: continue Rd = centres[j] shift = Rd - Rs shift_sph = qpms.cart2sph(shift) shift_kr = ksiz * shift_sph[0] shift_theta = shift_sph[1] shift_phi = shift_sph[2] A_yd_ys = np.empty((nelem_full,nelem_out), dtype = np.complex_) B_yd_ys = np.empty((nelem_full,nelem_out), dtype = np.complex_) for yd in range(nelem_full): for ys in range(nelem_out): A_yd_ys[yd, ys] = qpms.Ã(my[yd],ny[yd],my[ys],ny[ys],shift_kr, shift_theta, shift_phi, True, 1) B_yd_ys[yd, ys] = qpms.B̃(my[yd],ny[yd],my[ys],ny[ys],shift_kr, shift_phi, shift_phi, True, 1) for r in testr: sph_ssys = qpms.cart2sph(r+Rd-Rs) M_ssys, N_ssys = qpms.vswf_yr1(np.array([ksiz * sph_ssys[0], sph_ssys[1], sph_ssys[2]]), lMax_outgoing, J=1) sph_dsys = qpms.cart2sph(r) M_dsys, N_dsys = qpms.vswf_yr1(np.array([ksiz * sph_dsys[0], sph_dsys[1], sph_dsys[2]]), lMax, J=1) for ys in range(nelem_out): # Electrical waves E_1 = -1j*qpms.sph_loccart2cart(N_ssys[ys], sph_ssys) E_2 = -1j*qpms.sph_loccart2cart(np.dot(A_yd_ys[:,ys],N_dsys)+np.dot(B_yd_ys[:,ys],M_dsys),sph_dsys) if not np.allclose(E_1, E_2, rtol=rtol, atol=atol): failcounter += 1 else: passcounter += 1 # Magnetic waves E_1 = -1j*qpms.sph_loccart2cart(M_ssys[ys], sph_ssys) E_2 = -1j*qpms.sph_loccart2cart(np.dot(A_yd_ys[:,ys],M_dsys)+np.dot(B_yd_ys[:,ys],N_dsys),sph_dsys) if not np.allclose(E_1, E_2, rtol=rtol, atol=atol): failcounter += 1 else: passcounter += 1 self.assertLess(failcounter / (failcounter + passcounter), rfailtol, '%d / %d (%.2e) randomized numerical tests failed (tolerance %.2e)' % (failcounter, failcounter + passcounter, failcounter / (failcounter + passcounter), rfailtol)) return