Exemple #1
0
for num in num_types:
    num_wl = getattr(args, "wl_{}".format(num))
    number_dict[num] = BlockFloatingPoint(wl=num_wl, dim=0)
    print("{:10}: {}".format(num, number_dict[num]))
quant_dict = dict()
for num in ["weight", "momentum", "grad"]:
    quant_dict[num] = quantizer(forward_number=number_dict[num],
                                forward_rounding=args.rounding)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

model = models.__dict__['vgg'](dataset=args.dataset, depth=args.depth)
# automatically insert quantization modules
model = sequential_lower(model,
                         layer_types=["conv", "linear"],
                         forward_number=number_dict["activate"],
                         backward_number=number_dict["error"],
                         forward_rounding=args.rounding,
                         backward_rounding=args.rounding)
# removing the final quantization module
model.classifier = model.classifier[0]

if args.model:
    if os.path.isfile(args.model):
        print("=> loading checkpoint '{}'".format(args.model))
        checkpoint = torch.load(args.model)
        # args.start_epoch = checkpoint['epoch']
        # best_prec1 = checkpoint['best_prec1']
        try:
            model.load_state_dict(checkpoint['state_dict'])
        except:
            model = torch.nn.DataParallel(model,
Exemple #2
0
            param.data = weight_quantizer(param.data)
    elif args.quantize_method == 'static_quant_int8':
        print("Using static_quant_int8 model")
        mtcnn = auto_low.sequential_lower(mtcnn,
                                          static_quant.Quantizer,
                                          layer_types=['conv', 'linear'],
                                          device=device)

        mtcnn.load_state_dict(torch.load("model"))
        static_quant.lower(mtcnn)
        static_quant.show(mtcnn)
    elif args.quantize_method == 'float_quant':
        print("Using float_quant model")
        forward_num = FloatingPoint(exp=5, man=3)
        mtcnn = sequential_lower(mtcnn,
                                 layer_types=['conv', 'linear'],
                                 forward_number=forward_num,
                                 forward_rounding="nearest")

        weight_quantizer = lambda x: float_quantize(
            x, exp=5, man=3, rounding="nearest")
        for name, param in mtcnn.named_parameters():
            param.data = weight_quantizer(param.data)
    else:
        print("Using original model")

    print(mtcnn)

    video = mmcv.VideoReader('video.mp4')
    frames = [
        Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        for frame in video
Exemple #3
0
def main_worker(gpu, ngpus_per_node, args):
    global best_acc1
    args.gpu = gpu

    if args.gpu is not None:
        print("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size,
                                rank=args.rank)
    # create model
    if args.pretrained:
        print("=> using pre-trained model '{}'".format(args.arch))
        model = models.__dict__[args.arch](pretrained=True)
    else:
        print("=> creating model '{}'".format(args.arch))
        model = models.__dict__[args.arch]()

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int(
                (args.workers + ngpus_per_node - 1) / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(
                model, device_ids=[args.gpu])
        else:
            model.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
    else:
        # DataParallel will divide and allocate batch_size to all available GPUs
        if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
            model.features = torch.nn.DataParallel(model.features)
            model.cuda()
        else:
            model = torch.nn.DataParallel(model).cuda()

    forward_num = FloatingPoint(exp=5, man=3)
    #backward_num = FloatingPoint(exp=5, man=3)
    model = sequential_lower(model,
                             layer_types=['linear'],
                             forward_number=forward_num,
                             forward_rounding="nearest")

    # define loss function (criterion) and optimizer
    criterion = nn.CrossEntropyLoss().cuda(args.gpu)

    optimizer = torch.optim.SGD(model.parameters(),
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    weight_quant = lambda x: float_quantize(
        x, exp=5, man=3, rounding="nearest")

    optimizer = OptimLP(optimizer, weight_quant=weight_quant)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            best_acc1 = checkpoint['best_acc1']
            if args.gpu is not None:
                # best_acc1 may be from a checkpoint from a different GPU
                best_acc1 = best_acc1.to(args.gpu)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    # Data loading code
    traindir = os.path.join(args.data, 'train')
    valdir = os.path.join(args.data, 'val')
    normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                     std=[0.229, 0.224, 0.225])

    train_dataset = datasets.ImageFolder(
        traindir,
        transforms.Compose([
            transforms.RandomResizedCrop(224),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=(train_sampler is None),
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=train_sampler)

    val_loader = torch.utils.data.DataLoader(datasets.ImageFolder(
        valdir,
        transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.ToTensor(),
            normalize,
        ])),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=True)

    if args.evaluate:
        validate(val_loader, model, criterion, args)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch, args)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion, args)

        # remember best acc@1 and save checkpoint
        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if not args.multiprocessing_distributed or (
                args.multiprocessing_distributed
                and args.rank % ngpus_per_node == 0):
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_acc1': best_acc1,
                    'optimizer': optimizer.state_dict(),
                }, is_best)