def test_diffImageSmooth(self): image = np.arange(12.).reshape(4, 3) diff_image = diffImageSmooth(image, dy='x') np.testing.assert_array_almost_equal(diff_image, np.array( [[0.346482, 0.390491, 0.346482], [0.346482, 0.390491, 0.346482], [0.346482, 0.390491, 0.346482], [0.346482, 0.390491, 0.346482]])) with self.assertRaises(Exception): diffImageSmooth(np.arange(4), dy='x')
def cleanSensingImage(im, dy=0, sigma=None, order=3, fixreversal=True, removeoutliers=False, verbose=0): """ Clean up image from sensing dot Args: im (numpy array) dy (int or str): direction for differentiation order (int) fixreversal (bool) removeoutliers (bool) Returns: ww (image): processed image """ verbose = int(verbose) removeoutliers = bool(removeoutliers) im = np.array(im) if sigma is None: imx = diffImage(im, dy=dy, size='same') else: imx = diffImageSmooth(im, dy=dy, sigma=sigma) if order >= 0: vv = fitBackground(imx, smooth=True, verbose=verbose, fig=None, order=int(order), removeoutliers=removeoutliers) ww = (imx - vv).copy() else: ww = imx.copy() if fixreversal: ww = fixReversal(ww, verbose=verbose) return ww