def bates_calibration(df_option, ival=None): """ calibrate bates' model """ tmp = make_helpers(df_option) risk_free_ts = tmp['risk_free_rate'] dividend_ts = tmp['dividend_rate'] spot = tmp['spot'] options = tmp['options'] v0 = .02 if ival is None: ival = { 'v0': v0, 'kappa': 3.7, 'theta': v0, 'sigma': 1.0, 'rho': -.6, 'lambda': .1, 'nu': -.5, 'delta': 0.3 } process = BatesProcess(risk_free_ts, dividend_ts, spot, ival['v0'], ival['kappa'], ival['theta'], ival['sigma'], ival['rho'], ival['lambda'], ival['nu'], ival['delta']) model = BatesModel(process) engine = BatesEngine(model, 64) for option in options: option.set_pricing_engine(engine) om = LevenbergMarquardt() model.calibrate(options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)) print('model calibration results:') print('v0: %f kappa: %f theta: %f sigma: %f\nrho: %f lambda: \ %f nu: %f delta: %f' % (model.v0, model.kappa, model.theta, model.sigma, model.rho, model.Lambda, model.nu, model.delta)) calib_error = (1.0 / len(options)) * sum( [pow(o.calibration_error(), 2) for o in options]) print('SSE: %f' % calib_error) return merge_df(df_option, options, 'Bates')
def batesdoubleexpdetjump_calibration(df_option, dtTrade=None, df_rates=None, ival=None): # array of option helpers hh = heston_helpers(df_option, dtTrade, df_rates, ival) options = hh['options'] spot = hh['spot'] risk_free_ts = df_to_zero_curve(df_rates['R'], dtTrade) dividend_ts = df_to_zero_curve(df_rates['D'], dtTrade) v0 = .02 if ival is None: ival = { 'v0': v0, 'kappa': 3.7, 'theta': v0, 'sigma': .1, 'rho': -.6, 'lambda': .1, 'nu': -.5, 'delta': 0.3 } process = HestonProcess(risk_free_ts, dividend_ts, spot, ival['v0'], ival['kappa'], ival['theta'], ival['sigma'], ival['rho']) model = BatesDoubleExpDetJumpModel(process, 1.0) engine = BatesDoubleExpDetJumpEngine(model, 64) for option in options: option.set_pricing_engine(engine) om = LevenbergMarquardt() model.calibrate(options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)) print('BatesDoubleExpDetJumpModel calibration:') print( 'v0: %f kappa: %f theta: %f sigma: %f\nrho: %f lambda: %f \ nuUp: %f nuDown: %f\np: %f\nkappaLambda: %f thetaLambda: %f' % (model.v0, model.kappa, model.theta, model.sigma, model.rho, model.Lambda, model.nuUp, model.nuDown, model.p, model.kappaLambda, model.thetaLambda)) calib_error = (1.0 / len(options)) * sum( [pow(o.calibration_error(), 2) for o in options]) print('SSE: %f' % calib_error) return merge_df(df_option, options, 'BatesDoubleExpDetJump')
def test_hull_white_calibration(self): """ Adapted from ShortRateModelTest::testCachedHullWhite() """ today = Date(15, February, 2002) settlement = Date(19, February, 2002) self.settings.evaluation_date = today yield_ts = FlatForward(settlement, forward=0.04875825, settlement_days=0, calendar=NullCalendar(), daycounter=Actual365Fixed()) model = HullWhite(yield_ts, a=0.05, sigma=.005) data = [[1, 5, 0.1148 ], [2, 4, 0.1108 ], [3, 3, 0.1070 ], [4, 2, 0.1021 ], [5, 1, 0.1000 ]] index = Euribor6M(yield_ts) engine = JamshidianSwaptionEngine(model) swaptions = [] for start, length, volatility in data: vol = SimpleQuote(volatility) helper = SwaptionHelper(Period(start, Years), Period(length, Years), vol, index, Period(1, Years), Thirty360(), Actual360(), yield_ts) helper.set_pricing_engine(engine) swaptions.append(helper) # Set up the optimization problem om = LevenbergMarquardt(1.0e-8, 1.0e-8, 1.0e-8) endCriteria = EndCriteria(10000, 100, 1e-6, 1e-8, 1e-8) model.calibrate(swaptions, om, endCriteria) print('Hull White calibrated parameters:\na: %f sigma: %f' % (model.a, model.sigma)) cached_a = 0.0464041 cached_sigma = 0.00579912 tolerance = 1.0e-5 self.assertAlmostEqual(cached_a, model.a, delta=tolerance) self.assertAlmostEqual(cached_sigma, model.sigma, delta=tolerance)
def bates_calibration(df_option, dtTrade=None, df_rates=None, ival=None): # array of option helpers hh = heston_helpers(df_option, dtTrade, df_rates, ival) options = hh['options'] spot = hh['spot'] risk_free_ts = dfToZeroCurve(df_rates['R'], dtTrade) dividend_ts = dfToZeroCurve(df_rates['D'], dtTrade) v0 = .02 if ival is None: ival = { 'v0': v0, 'kappa': 3.7, 'theta': v0, 'sigma': 1.0, 'rho': -.6, 'lambda': .1, 'nu': -.5, 'delta': 0.3 } process = BatesProcess(risk_free_ts, dividend_ts, spot, ival['v0'], ival['kappa'], ival['theta'], ival['sigma'], ival['rho'], ival['lambda'], ival['nu'], ival['delta']) model = BatesModel(process) engine = BatesEngine(model, 64) for option in options: option.set_pricing_engine(engine) om = LevenbergMarquardt() model.calibrate(options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)) print('model calibration results:') print( 'v0: %f kappa: %f theta: %f sigma: %f\nrho: %f lambda: %f nu: %f delta: %f' % (model.v0, model.kappa, model.theta, model.sigma, model.rho, model.Lambda, model.nu, model.delta)) calib_error = (1.0 / len(options)) * sum( [pow(o.calibration_error(), 2) for o in options]) print('SSE: %f' % calib_error) return merge_df(df_option, options, 'Bates')
def heston_calibration(df_option, ival=None): """ calibrate heston model """ tmp = make_helpers(df_option) risk_free_ts = tmp['risk_free_rate'] dividend_ts = tmp['dividend_rate'] spot = tmp['spot'] options = tmp['options'] # initial values for parameters if ival is None: ival = { 'v0': 0.1, 'kappa': 1.0, 'theta': 0.1, 'sigma': 0.5, 'rho': -.5 } process = HestonProcess(risk_free_ts, dividend_ts, spot, ival['v0'], ival['kappa'], ival['theta'], ival['sigma'], ival['rho']) model = HestonModel(process) engine = AnalyticHestonEngine(model, 64) for option in options: option.set_pricing_engine(engine) om = LevenbergMarquardt(1e-8, 1e-8, 1e-8) model.calibrate(options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)) print('model calibration results:') print('v0: %f kappa: %f theta: %f sigma: %f rho: %f' % (model.v0, model.kappa, model.theta, model.sigma, model.rho)) calib_error = (1.0 / len(options)) * sum( [pow(o.calibration_error() * 100.0, 2) for o in options]) print('SSE: %f' % calib_error) # merge the fitted volatility and the input data set return merge_df(df_option, options, 'Heston')
def heston_calibration(df_option, dtTrade=None, df_rates=None, ival=None): """ calibrate heston model """ # array of option helpers print df_option, df_rates, ival hh = heston_helpers(df_option, dtTrade, df_rates, ival) options = hh['options'] spot = hh['spot'] risk_free_ts = df_to_zero_curve(df_rates['R'], dtTrade) dividend_ts = df_to_zero_curve(df_rates['D'], dtTrade) if ival is None: ival = { 'v0': 0.1, 'kappa': 1.0, 'theta': 0.1, 'sigma': 0.5, 'rho': -.5 } process = HestonProcess(risk_free_ts, dividend_ts, spot, ival['v0'], ival['kappa'], ival['theta'], ival['sigma'], ival['rho']) model = HestonModel(process) engine = AnalyticHestonEngine(model, 64) for option in options: option.set_pricing_engine(engine) om = LevenbergMarquardt(1e-8, 1e-8, 1e-8) model.calibrate(options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)) print('model calibration results:') print('v0: %f kappa: %f theta: %f sigma: %f rho: %f' % (model.v0, model.kappa, model.theta, model.sigma, model.rho)) calib_error = (1.0 / len(options)) * sum( [pow(o.calibration_error() * 100.0, 2) for o in options]) print('SSE: %f' % calib_error) return merge_df(df_option, options, 'Heston')
def test_heston_hw_calibration(self): """ From Quantlib test suite """ print("Testing Heston Hull-White calibration...") ## Calibration of a hybrid Heston-Hull-White model using ## the finite difference HestonHullWhite pricing engine ## Input surface is based on a Heston-Hull-White model with ## Hull-White: a = 0.00883, \sigma = 0.00631 ## Heston : \nu = 0.12, \kappa = 2.0, ## \theta = 0.09, \sigma = 0.5, \rho=-0.75 ## Equity Short rate correlation: -0.5 dc = Actual365Fixed() calendar = TARGET() todays_date = Date(28, March, 2004) settings = Settings() settings.evaluation_date = todays_date r_ts = flat_rate(todays_date, 0.05, dc) ## assuming, that the Hull-White process is already calibrated ## on a given set of pure interest rate calibration instruments. hw_process = HullWhiteProcess(r_ts, a=0.00883, sigma=0.00631) q_ts = flat_rate(todays_date, 0.02, dc) s0 = SimpleQuote(100.0) # vol surface strikes = [50, 75, 90, 100, 110, 125, 150, 200] maturities = [1 / 12., 3 / 12., 0.5, 1.0, 2.0, 3.0, 5.0, 7.5, 10] vol = [ 0.482627, 0.407617, 0.366682, 0.340110, 0.314266, 0.280241, 0.252471, 0.325552, 0.464811, 0.393336, 0.354664, 0.329758, 0.305668, 0.273563, 0.244024, 0.244886, 0.441864, 0.375618, 0.340464, 0.318249, 0.297127, 0.268839, 0.237972, 0.225553, 0.407506, 0.351125, 0.322571, 0.305173, 0.289034, 0.267361, 0.239315, 0.213761, 0.366761, 0.326166, 0.306764, 0.295279, 0.284765, 0.270592, 0.250702, 0.222928, 0.345671, 0.314748, 0.300259, 0.291744, 0.283971, 0.273475, 0.258503, 0.235683, 0.324512, 0.303631, 0.293981, 0.288338, 0.283193, 0.276248, 0.266271, 0.250506, 0.311278, 0.296340, 0.289481, 0.285482, 0.281840, 0.276924, 0.269856, 0.258609, 0.303219, 0.291534, 0.286187, 0.283073, 0.280239, 0.276414, 0.270926, 0.262173 ] start_v0 = 0.2 * 0.2 start_theta = start_v0 start_kappa = 0.5 start_sigma = 0.25 start_rho = -0.5 equityShortRateCorr = -0.5 corrConstraint = HestonHullWhiteCorrelationConstraint( equityShortRateCorr) heston_process = HestonProcess(r_ts, q_ts, s0, start_v0, start_kappa, start_theta, start_sigma, start_rho) h_model = HestonModel(heston_process) h_engine = AnalyticHestonEngine(h_model) options = [] # first calibrate a heston model to get good initial # parameters for i in range(len(maturities)): maturity = Period(int(maturities[i] * 12.0 + 0.5), Months) for j, s in enumerate(strikes): v = SimpleQuote(vol[i * len(strikes) + j]) helper = HestonModelHelper(maturity, calendar, s0.value, s, v, r_ts, q_ts, PriceError) helper.set_pricing_engine(h_engine) options.append(helper) om = LevenbergMarquardt(1e-6, 1e-8, 1e-8) # Heston model h_model.calibrate(options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-4, 1.0e-8)) print("Heston calibration") print("v0: %f" % h_model.v0) print("theta: %f" % h_model.theta) print("kappa: %f" % h_model.kappa) print("sigma: %f" % h_model.sigma) print("rho: %f" % h_model.rho) h_process_2 = HestonProcess(r_ts, q_ts, s0, h_model.v0, h_model.kappa, h_model.theta, h_model.sigma, h_model.rho) hhw_model = HestonModel(h_process_2) options = [] for i in range(len(maturities)): tGrid = np.max((10.0, maturities[i] * 10.0)) hhw_engine = FdHestonHullWhiteVanillaEngine( hhw_model, hw_process, equityShortRateCorr, tGrid, 61, 13, 9, 0, True, FdmSchemeDesc.Hundsdorfer()) hhw_engine.enable_multiple_strikes_caching(strikes) maturity = Period(int(maturities[i] * 12.0 + 0.5), Months) # multiple strikes engine works best if the first option # per maturity has the average strike (because the first # option is priced first during the calibration and # the first pricing is used to calculate the prices # for all strikes # list of strikes by distance from moneyness indx = np.argsort(np.abs(np.array(strikes) - s0.value)) for j, tmp in enumerate(indx): js = indx[j] s = strikes[js] v = SimpleQuote(vol[i * len(strikes) + js]) helper = HestonModelHelper(maturity, calendar, s0.value, strikes[js], v, r_ts, q_ts, PriceError) helper.set_pricing_engine(hhw_engine) options.append(helper) vm = LevenbergMarquardt(1e-6, 1e-2, 1e-2) hhw_model.calibrate(options, vm, EndCriteria(400, 40, 1.0e-8, 1.0e-4, 1.0e-8), corrConstraint) print("Heston HW calibration with FD engine") print("v0: %f" % hhw_model.v0) print("theta: %f" % hhw_model.theta) print("kappa: %f" % hhw_model.kappa) print("sigma: %f" % hhw_model.sigma) print("rho: %f" % hhw_model.rho) relTol = 0.05 expected_v0 = 0.12 expected_kappa = 2.0 expected_theta = 0.09 expected_sigma = 0.5 expected_rho = -0.75 self.assertAlmostEquals(np.abs(hhw_model.v0 - expected_v0) / expected_v0, 0, delta=relTol) self.assertAlmostEquals(np.abs(hhw_model.theta - expected_theta) / expected_theta, 0, delta=relTol) self.assertAlmostEquals(np.abs(hhw_model.kappa - expected_kappa) / expected_kappa, 0, delta=relTol) self.assertAlmostEquals(np.abs(hhw_model.sigma - expected_sigma) / expected_sigma, 0, delta=relTol) self.assertAlmostEquals(np.abs(hhw_model.rho - expected_rho) / expected_rho, 0, delta=relTol)
def heston_calibration(df_option, ival=None): """ calibrate heston model """ # extract rates and div yields from the data set df_tmp = DataFrame.filter(df_option, items=['dtExpiry', 'iRate', 'iDiv']) grouped = df_tmp.groupby('dtExpiry') df_rates = grouped.agg(lambda x: x[0]) dtTrade = df_option['dtTrade'][0] # back out the spot from any forward iRate = df_option['iRate'][0] iDiv = df_option['iDiv'][0] TTM = df_option['TTM'][0] Fwd = df_option['Fwd'][0] spot = SimpleQuote(Fwd * np.exp(-(iRate - iDiv) * TTM)) print('Spot: %f risk-free rate: %f div. yield: %f' % (spot.value, iRate, iDiv)) # build array of option helpers hh = heston_helpers(spot, df_option, dtTrade, df_rates) options = hh['options'] spot = hh['spot'] risk_free_ts = dfToZeroCurve(df_rates['iRate'], dtTrade) dividend_ts = dfToZeroCurve(df_rates['iDiv'], dtTrade) # initial values for parameters if ival is None: ival = { 'v0': 0.1, 'kappa': 1.0, 'theta': 0.1, 'sigma': 0.5, 'rho': -.5 } process = HestonProcess(risk_free_ts, dividend_ts, spot, ival['v0'], ival['kappa'], ival['theta'], ival['sigma'], ival['rho']) model = HestonModel(process) engine = AnalyticHestonEngine(model, 64) for option in options: option.set_pricing_engine(engine) om = LevenbergMarquardt(1e-8, 1e-8, 1e-8) model.calibrate(options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)) print('model calibration results:') print('v0: %f kappa: %f theta: %f sigma: %f rho: %f' % (model.v0, model.kappa, model.theta, model.sigma, model.rho)) calib_error = (1.0 / len(options)) * sum( [pow(o.calibration_error() * 100.0, 2) for o in options]) print('SSE: %f' % calib_error) # merge the fitted volatility and the input data set return merge_df(df_option, options, 'Heston')
def test_black_calibration(self): # calibrate a Heston model to a constant volatility surface without # smile. expected result is a vanishing volatility of the volatility. # In addition theta and v0 should be equal to the constant variance todays_date = today() self.settings.evaluation_date = todays_date daycounter = Actual360() calendar = NullCalendar() risk_free_ts = flat_rate(0.04, daycounter) dividend_ts = flat_rate(0.50, daycounter) option_maturities = [ Period(1, Months), Period(2, Months), Period(3, Months), Period(6, Months), Period(9, Months), Period(1, Years), Period(2, Years) ] options = [] s0 = SimpleQuote(1.0) vol = SimpleQuote(0.1) volatility = vol.value for maturity in option_maturities: for moneyness in np.arange(-1.0, 2.0, 1.): tau = daycounter.year_fraction( risk_free_ts.reference_date, calendar.advance( risk_free_ts.reference_date, period=maturity) ) forward_price = s0.value * dividend_ts.discount(tau) / \ risk_free_ts.discount(tau) strike_price = forward_price * np.exp( -moneyness * volatility * np.sqrt(tau) ) options.append( HestonModelHelper( maturity, calendar, s0.value, strike_price, vol, risk_free_ts, dividend_ts ) ) for sigma in np.arange(0.1, 0.7, 0.2): v0 = 0.01 kappa = 0.2 theta = 0.02 rho = -0.75 process = HestonProcess( risk_free_ts, dividend_ts, s0, v0, kappa, theta, sigma, rho ) self.assertEqual(v0, process.v0) self.assertEqual(kappa, process.kappa) self.assertEqual(theta, process.theta) self.assertEqual(sigma, process.sigma) self.assertEqual(rho, process.rho) self.assertEqual(1.0, process.s0.value) model = HestonModel(process) engine = AnalyticHestonEngine(model, 96) for option in options: option.set_pricing_engine(engine) optimisation_method = LevenbergMarquardt(1e-8, 1e-8, 1e-8) end_criteria = EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8) model.calibrate(options, optimisation_method, end_criteria) tolerance = 3.0e-3 self.assertFalse(model.sigma > tolerance) self.assertAlmostEqual( model.kappa * model.theta, model.kappa * volatility ** 2, delta=tolerance ) self.assertAlmostEqual(model.v0, volatility ** 2, delta=tolerance)
def test_DAX_calibration(self): # this example is taken from A. Sepp # Pricing European-Style Options under Jump Diffusion Processes # with Stochstic Volatility: Applications of Fourier Transform # http://math.ut.ee/~spartak/papers/stochjumpvols.pdf settlement_date = Date(5, July, 2002) self.settings.evaluation_date = settlement_date daycounter = Actual365Fixed() calendar = TARGET() t = [13, 41, 75, 165, 256, 345, 524, 703] r = [0.0357,0.0349,0.0341,0.0355,0.0359,0.0368,0.0386,0.0401] dates = [settlement_date] + [settlement_date + val for val in t] rates = [0.0357] + r risk_free_ts = ZeroCurve(dates, rates, daycounter) dividend_ts = FlatForward( settlement_date, forward=0.0, daycounter=daycounter ) v = [ 0.6625,0.4875,0.4204,0.3667,0.3431,0.3267,0.3121,0.3121, 0.6007,0.4543,0.3967,0.3511,0.3279,0.3154,0.2984,0.2921, 0.5084,0.4221,0.3718,0.3327,0.3155,0.3027,0.2919,0.2889, 0.4541,0.3869,0.3492,0.3149,0.2963,0.2926,0.2819,0.2800, 0.4060,0.3607,0.3330,0.2999,0.2887,0.2811,0.2751,0.2775, 0.3726,0.3396,0.3108,0.2781,0.2788,0.2722,0.2661,0.2686, 0.3550,0.3277,0.3012,0.2781,0.2781,0.2661,0.2661,0.2681, 0.3428,0.3209,0.2958,0.2740,0.2688,0.2627,0.2580,0.2620, 0.3302,0.3062,0.2799,0.2631,0.2573,0.2533,0.2504,0.2544, 0.3343,0.2959,0.2705,0.2540,0.2504,0.2464,0.2448,0.2462, 0.3460,0.2845,0.2624,0.2463,0.2425,0.2385,0.2373,0.2422, 0.3857,0.2860,0.2578,0.2399,0.2357,0.2327,0.2312,0.2351, 0.3976,0.2860,0.2607,0.2356,0.2297,0.2268,0.2241,0.2320 ] s0 = SimpleQuote(4468.17) strikes = [ 3400, 3600, 3800, 4000, 4200, 4400, 4500, 4600, 4800, 5000, 5200, 5400, 5600 ] options = [] for s, strike in enumerate(strikes): for m in range(len(t)): vol = SimpleQuote(v[s * 8 + m]) # round to weeks maturity = Period((int)((t[m] + 3) / 7.), Weeks) options.append( HestonModelHelper( maturity, calendar, s0.value, strike, vol, risk_free_ts, dividend_ts, ImpliedVolError ) ) v0 = 0.1 kappa = 1.0 theta = 0.1 sigma = 0.5 rho = -0.5 process = HestonProcess( risk_free_ts, dividend_ts, s0, v0, kappa, theta, sigma, rho ) model = HestonModel(process) engine = AnalyticHestonEngine(model, 64) for option in options: option.set_pricing_engine(engine) om = LevenbergMarquardt(1e-8, 1e-8, 1e-8) model.calibrate( options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8) ) sse = 0 for i in range(len(strikes) * len(t)): diff = options[i].calibration_error() * 100.0 sse += diff * diff expected = 177.2 # see article by A. Sepp. self.assertAlmostEqual(expected, sse, delta=1.0)