Exemple #1
0
    def test_smith(self):
        # test against result published in
        # Journal of Computational Finance Vol. 11/1 Fall 2007
        # An almost exact simulation method for the heston model

        settlement_date = today()
        self.settings.evaluation_date = settlement_date

        daycounter = ActualActual()
        timeToMaturity = 4

        exercise_date = settlement_date + timeToMaturity * 365

        c_payoff = PlainVanillaPayoff(Call, 100)

        exercise = EuropeanExercise(exercise_date)

        risk_free_ts = flat_rate(0., daycounter)
        dividend_ts = flat_rate(0., daycounter)

        s0 = SimpleQuote(100.0)

        v0    = 0.0194
        kappa = 1.0407
        theta = 0.0586
        sigma = 0.5196
        rho   = -.6747

        nb_steps_a = 100
        nb_paths = 20000
        seed = 12347

        process = HestonProcess(
            risk_free_ts, dividend_ts, s0, v0, kappa, theta,
            sigma, rho, QuadraticExponential)

        model = HestonModel(process)

        option = VanillaOption(c_payoff, exercise)

        engine = AnalyticHestonEngine(model, 144)

        option.set_pricing_engine(engine)

        price_fft  = option.net_present_value

        engine = MCEuropeanHestonEngine(
            process,
            antithetic_variate=True,
            steps_per_year=nb_steps_a,
            required_samples=nb_paths,
            seed=seed)

        option.set_pricing_engine(engine)
        price_mc = option.net_present_value

        expected = 15.1796
        tolerance = .05

        self.assertAlmostEqual(price_fft, expected, delta=tolerance)
        self.assertAlmostEqual(price_mc, expected, delta=tolerance)
Exemple #2
0
    def test_black_calibration(self):

        # calibrate a Heston model to a constant volatility surface without
        # smile. expected result is a vanishing volatility of the volatility.
        # In addition theta and v0 should be equal to the constant variance

        todays_date = today()

        self.settings.evaluation_date = todays_date

        daycounter = Actual360()
        calendar = NullCalendar()

        risk_free_ts = flat_rate(0.04, daycounter)
        dividend_ts = flat_rate(0.50, daycounter)

        option_maturities = [
            Period(1, Months),
            Period(2, Months),
            Period(3, Months),
            Period(6, Months),
            Period(9, Months),
            Period(1, Years),
            Period(2, Years)
        ]

        options = []

        s0 = SimpleQuote(1.0)
        vol = SimpleQuote(0.1)

        volatility = vol.value

        for maturity in option_maturities:
            for moneyness in np.arange(-1.0, 2.0, 1.):
                tau = daycounter.year_fraction(
                    risk_free_ts.reference_date,
                    calendar.advance(
                        risk_free_ts.reference_date,
                        period=maturity)
                )
                forward_price = s0.value * dividend_ts.discount(tau) / \
                                risk_free_ts.discount(tau)
                strike_price = forward_price * np.exp(
                    -moneyness * volatility * np.sqrt(tau)
                )
                options.append(
                    HestonModelHelper(
                        maturity, calendar, s0.value, strike_price, vol,
                        risk_free_ts, dividend_ts
                    )
                )

        for sigma in np.arange(0.1, 0.7, 0.2):
            v0    = 0.01
            kappa = 0.2
            theta = 0.02
            rho   = -0.75

            process = HestonProcess(
                risk_free_ts, dividend_ts, s0, v0, kappa, theta, sigma, rho
            )

            self.assertEqual(v0, process.v0)
            self.assertEqual(kappa, process.kappa)
            self.assertEqual(theta, process.theta)
            self.assertEqual(sigma, process.sigma)
            self.assertEqual(rho, process.rho)
            self.assertEqual(1.0, process.s0.value)

            model = HestonModel(process)
            engine = AnalyticHestonEngine(model, 96)

            for option in options:
                option.set_pricing_engine(engine)

            optimisation_method = LevenbergMarquardt(1e-8, 1e-8, 1e-8)

            end_criteria = EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)
            model.calibrate(options, optimisation_method, end_criteria)

            tolerance = 3.0e-3

            self.assertFalse(model.sigma > tolerance)

            self.assertAlmostEqual(
                model.kappa * model.theta,
                model.kappa * volatility ** 2,
                delta=tolerance
            )
            self.assertAlmostEqual(model.v0, volatility ** 2, delta=tolerance)
    def test_zanette(self):
        """
        From paper by A. Zanette et al.
        """

        dc = Actual365Fixed()

        todays_date = today()
        settings = Settings()
        settings.evaluation_date = todays_date

        # constant yield and div curves

        dates = [todays_date + Period(i, Years) for i in range(3)]
        rates = [0.04 for i in range(3)]
        divRates = [0.03 for i in range(3)]
        r_ts = ZeroCurve(dates, rates, dc)
        q_ts = ZeroCurve(dates, divRates, dc)

        s0 = SimpleQuote(100)

        # Heston model

        v0 = .1
        kappa_v = 2
        theta_v = 0.1
        sigma_v = 0.3
        rho_sv = -0.5

        hestonProcess = HestonProcess(risk_free_rate_ts=r_ts,
                                      dividend_ts=q_ts,
                                      s0=s0,
                                      v0=v0,
                                      kappa=kappa_v,
                                      theta=theta_v,
                                      sigma=sigma_v,
                                      rho=rho_sv)

        hestonModel = HestonModel(hestonProcess)

        # Hull-White

        kappa_r = 1
        sigma_r = .2

        hullWhiteProcess = HullWhiteProcess(r_ts, a=kappa_r, sigma=sigma_r)

        strike = 100
        maturity = 1
        type = Call

        maturity_date = todays_date + Period(maturity, Years)

        exercise = EuropeanExercise(maturity_date)

        payoff = PlainVanillaPayoff(type, strike)

        option = VanillaOption(payoff, exercise)

        def price_cal(rho, tGrid):
            fd_hestonHwEngine = FdHestonHullWhiteVanillaEngine(
                hestonModel, hullWhiteProcess, rho, tGrid, 100, 40, 20, 0,
                True, FdmSchemeDesc.Hundsdorfer())
            option.set_pricing_engine(fd_hestonHwEngine)
            return option.npv

        calc_price = []
        for rho in [-0.5, 0, .5]:
            for tGrid in [50, 100, 150, 200]:
                tmp = price_cal(rho, tGrid)
                print("rho (S,r): %f Ns: %d Price: %f" % (rho, tGrid, tmp))
                calc_price.append(tmp)

        expected_price = [
            11.38,
        ] * 4 + [
            12.79,
        ] * 4 + [
            14.06,
        ] * 4

        np.testing.assert_almost_equal(calc_price, expected_price, 2)
Exemple #4
0
    def test_DAX_calibration(self):

        # this example is taken from A. Sepp
        # Pricing European-Style Options under Jump Diffusion Processes
        # with Stochstic Volatility: Applications of Fourier Transform
        # http://math.ut.ee/~spartak/papers/stochjumpvols.pdf

        settlement_date = Date(5, July, 2002)

        self.settings.evaluation_date = settlement_date

        daycounter = Actual365Fixed()
        calendar = TARGET()

        t = [13, 41, 75, 165, 256, 345, 524, 703]
        r = [0.0357,0.0349,0.0341,0.0355,0.0359,0.0368,0.0386,0.0401]

        dates = [settlement_date] + [settlement_date + val for val in t]
        rates = [0.0357] + r

        risk_free_ts = ZeroCurve(dates, rates, daycounter)
        dividend_ts = FlatForward(
            settlement_date, forward=0.0, daycounter=daycounter
        )

        v = [
            0.6625,0.4875,0.4204,0.3667,0.3431,0.3267,0.3121,0.3121,
            0.6007,0.4543,0.3967,0.3511,0.3279,0.3154,0.2984,0.2921,
            0.5084,0.4221,0.3718,0.3327,0.3155,0.3027,0.2919,0.2889,
            0.4541,0.3869,0.3492,0.3149,0.2963,0.2926,0.2819,0.2800,
            0.4060,0.3607,0.3330,0.2999,0.2887,0.2811,0.2751,0.2775,
            0.3726,0.3396,0.3108,0.2781,0.2788,0.2722,0.2661,0.2686,
            0.3550,0.3277,0.3012,0.2781,0.2781,0.2661,0.2661,0.2681,
            0.3428,0.3209,0.2958,0.2740,0.2688,0.2627,0.2580,0.2620,
            0.3302,0.3062,0.2799,0.2631,0.2573,0.2533,0.2504,0.2544,
            0.3343,0.2959,0.2705,0.2540,0.2504,0.2464,0.2448,0.2462,
            0.3460,0.2845,0.2624,0.2463,0.2425,0.2385,0.2373,0.2422,
            0.3857,0.2860,0.2578,0.2399,0.2357,0.2327,0.2312,0.2351,
            0.3976,0.2860,0.2607,0.2356,0.2297,0.2268,0.2241,0.2320
        ]

        s0 = SimpleQuote(4468.17)
        strikes = [
            3400, 3600, 3800, 4000, 4200, 4400, 4500, 4600, 4800, 5000, 5200,
            5400, 5600
        ]

        options = []

        for s, strike in enumerate(strikes):
            for m in range(len(t)):
                vol = SimpleQuote(v[s * 8 + m])
                # round to weeks
                maturity = Period((int)((t[m] + 3) / 7.), Weeks)
                options.append(
                    HestonModelHelper(
                        maturity, calendar, s0.value, strike, vol,
                        risk_free_ts, dividend_ts,
                        ImpliedVolError
                    )
                )

        v0    = 0.1
        kappa = 1.0
        theta = 0.1
        sigma = 0.5
        rho   = -0.5

        process = HestonProcess(
            risk_free_ts, dividend_ts, s0, v0, kappa, theta, sigma, rho
        )

        model = HestonModel(process)

        engine = AnalyticHestonEngine(model, 64)

        for option in options:
            option.set_pricing_engine(engine)

        om = LevenbergMarquardt(1e-8, 1e-8, 1e-8)

        model.calibrate(
            options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)
        )

        sse = 0
        for i in range(len(strikes) * len(t)):
            diff = options[i].calibration_error() * 100.0
            sse += diff * diff

        expected = 177.2  # see article by A. Sepp.
        self.assertAlmostEqual(expected, sse, delta=1.0)
    def test_compare_BsmHW_HestonHW(self):
        """
        From Quantlib test suite
        """

        print("Comparing European option pricing for a BSM " +
              "process with one-factor Hull-White model...")

        dc = Actual365Fixed()

        todays_date = today()
        settings = Settings()
        settings.evaluation_date = todays_date
        tol = 1.e-2

        spot = SimpleQuote(100)

        dates = [todays_date + Period(i, Years) for i in range(40)]

        rates = [0.01 + 0.0002 * np.exp(np.sin(i / 4.0)) for i in range(40)]
        divRates = [0.02 + 0.0001 * np.exp(np.sin(i / 5.0)) for i in range(40)]

        s0 = SimpleQuote(100)

        r_ts = ZeroCurve(dates, rates, dc)
        q_ts = ZeroCurve(dates, divRates, dc)

        vol = SimpleQuote(0.25)
        vol_ts = BlackConstantVol(todays_date, NullCalendar(), vol.value, dc)

        bsm_process = BlackScholesMertonProcess(spot, q_ts, r_ts, vol_ts)

        variance = vol.value * vol.value
        hestonProcess = HestonProcess(risk_free_rate_ts=r_ts,
                                      dividend_ts=q_ts,
                                      s0=s0,
                                      v0=variance,
                                      kappa=5.0,
                                      theta=variance,
                                      sigma=1e-4,
                                      rho=0.0)

        hestonModel = HestonModel(hestonProcess)

        hullWhiteModel = HullWhite(r_ts, a=0.01, sigma=0.01)

        bsmhwEngine = AnalyticBSMHullWhiteEngine(0.0, bsm_process,
                                                 hullWhiteModel)

        hestonHwEngine = AnalyticHestonHullWhiteEngine(hestonModel,
                                                       hullWhiteModel, 128)

        tol = 1e-5
        strikes = [0.25, 0.5, 0.75, 0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 2.0, 4.0]
        maturities = [1, 2, 3, 5, 10, 15, 20, 25, 30]
        types = [Put, Call]

        for option_type in types:
            for strike in strikes:
                for maturity in maturities:
                    maturity_date = todays_date + Period(maturity, Years)

                    exercise = EuropeanExercise(maturity_date)

                    fwd = strike * s0.value * \
                        q_ts.discount(maturity_date) / \
                        r_ts.discount(maturity_date)

                    payoff = PlainVanillaPayoff(option_type, fwd)

                    option = VanillaOption(payoff, exercise)

                    option.set_pricing_engine(bsmhwEngine)
                    calculated = option.npv

                    option.set_pricing_engine(hestonHwEngine)
                    expected = option.npv

                    if ((np.abs(expected - calculated) > calculated * tol)
                            and (np.abs(expected - calculated) > tol)):

                        print("Failed to reproduce npv")
                        print("strike    : %f" % strike)
                        print("maturity  : %d" % maturity)
                        print("type      : %s" % option_type.name)

                    self.assertAlmostEqual(expected, calculated, delta=tol)
    def test_compare_bsm_bsmhw_hestonhw(self):

        dc = Actual365Fixed()

        todays_date = today()
        settings = Settings()
        settings.evaluation_date = todays_date
        tol = 1.e-2

        spot = SimpleQuote(100)

        dates = [todays_date + Period(i, Years) for i in range(40)]

        rates = [0.01 + 0.0002 * np.exp(np.sin(i / 4.0)) for i in range(40)]
        divRates = [0.02 + 0.0001 * np.exp(np.sin(i / 5.0)) for i in range(40)]

        s0 = SimpleQuote(100)

        r_ts = ZeroCurve(dates, rates, dc)
        q_ts = ZeroCurve(dates, divRates, dc)

        vol = SimpleQuote(0.25)
        vol_ts = BlackConstantVol(todays_date, NullCalendar(), vol.value, dc)

        bsm_process = BlackScholesMertonProcess(spot, q_ts, r_ts, vol_ts)

        payoff = PlainVanillaPayoff(Call, 100)
        exercise = EuropeanExercise(dates[1])

        option = VanillaOption(payoff, exercise)

        analytic_european_engine = AnalyticEuropeanEngine(bsm_process)

        option.set_pricing_engine(analytic_european_engine)
        npv_bsm = option.npv

        variance = vol.value * vol.value
        hestonProcess = HestonProcess(risk_free_rate_ts=r_ts,
                                      dividend_ts=q_ts,
                                      s0=s0,
                                      v0=variance,
                                      kappa=5.0,
                                      theta=variance,
                                      sigma=1e-4,
                                      rho=0.0)

        hestonModel = HestonModel(hestonProcess)

        hullWhiteModel = HullWhite(r_ts, a=0.01, sigma=0.01)

        bsmhwEngine = AnalyticBSMHullWhiteEngine(0.0, bsm_process,
                                                 hullWhiteModel)

        hestonHwEngine = AnalyticHestonHullWhiteEngine(hestonModel,
                                                       hullWhiteModel, 128)

        hestonEngine = AnalyticHestonEngine(hestonModel, 144)
        option.set_pricing_engine(hestonEngine)

        npv_heston = option.npv

        option.set_pricing_engine(bsmhwEngine)
        npv_bsmhw = option.npv

        option.set_pricing_engine(hestonHwEngine)
        npv_hestonhw = option.npv

        print("calculated with BSM: %f" % npv_bsm)
        print("BSM-HW: %f" % npv_bsmhw)
        print("Heston: %f" % npv_heston)
        print("Heston-HW: %f" % npv_hestonhw)

        self.assertAlmostEqual(npv_bsm, npv_bsmhw, delta=tol)
        self.assertAlmostEqual(npv_bsm, npv_hestonhw, delta=tol)
Exemple #7
0
# <markdowncell>

# The simulation
# --------------
#
# The *simulate* function is not part of Quantlib. It has been added to the pyQL interface (see folder quantlib/sim). This illustrates how to crerate extensions to Quantlib and expose them to python.

# <codecell>

import pylab as pl
from quantlib.sim.simulate import simulateHeston

# simulate and plot Heston paths
paths = 2
steps = 100
horizon = 2
seed = 12345

model = HestonModel(process)

res = simulateHeston(model, paths, steps, horizon, seed, antithetic=True)

time = res[0, :]
simulations = res[1:, :].T
pl.plot(time, simulations)
pl.xlabel('Time')
pl.ylabel('Stock Price')
pl.title('Heston Process Simulation')
show()
def heston_calibration(df_option, ival=None):
    """
    calibrate heston model
    """

    # extract rates and div yields from the data set    
    df_tmp = DataFrame.filter(df_option, items=['dtExpiry', 'iRate', 'iDiv'])
    grouped = df_tmp.groupby('dtExpiry')

    def aggregate(serie):
        return serie[serie.index[0]]

    df_rates = grouped.agg(aggregate)

    # Get first index:
    first_index = 0

    dtTrade = df_option['dtTrade'][first_index]
    # back out the spot from any forward
    iRate = df_option['iRate'][first_index]
    iDiv = df_option['iDiv'][first_index]
    TTM = df_option['TTM'][first_index]
    Fwd = df_option['Fwd'][first_index]
    spot = SimpleQuote(Fwd*np.exp(-(iRate-iDiv)*TTM))
    print('Spot: %f risk-free rate: %f div. yield: %f' % (spot.value, iRate, iDiv))

    # build array of option helpers
    hh = heston_helpers(spot, df_option, dtTrade, df_rates)
    options = hh['options']
    spot = hh['spot']

    risk_free_ts = dfToZeroCurve(df_rates['iRate'], dtTrade)
    dividend_ts = dfToZeroCurve(df_rates['iDiv'], dtTrade)

    # initial values for parameters
    if ival is None:
        ival = {'v0': 0.1, 'kappa': 1.0, 'theta': 0.1,
        'sigma': 0.5, 'rho': -.5}

    process = HestonProcess(
        risk_free_ts, dividend_ts, spot, ival['v0'], ival['kappa'],
         ival['theta'], ival['sigma'], ival['rho'])

    model = HestonModel(process)
    engine = AnalyticHestonEngine(model, 64)

    for option in options:
        option.set_pricing_engine(engine)

    om = LevenbergMarquardt(1e-8, 1e-8, 1e-8)
    model.calibrate(
        options, om, EndCriteria(400, 40, 1.0e-8, 1.0e-8, 1.0e-8)
    )

    print('model calibration results:')
    print('v0: %f kappa: %f theta: %f sigma: %f rho: %f' %
          (model.v0, model.kappa, model.theta, model.sigma,
           model.rho))

    calib_error = (1.0/len(options)) * sum(
        [pow(o.calibration_error()*100.0,2) for o in options])

    print('SSE: %f' % calib_error)

    # merge the fitted volatility and the input data set
    return merge_df(df_option, options, 'Heston')
Exemple #9
0
    def test_smith(self):
        # test against result published in
        # Journal of Computational Finance Vol. 11/1 Fall 2007
        # An almost exact simulation method for the heston model

        def payoff(o, scenario):
            Strike = o['S']
            if o['CP'] == 'C':
                exercise = [max(ST - Strike, 0) for ST in scenario]
            else:
                exercise = [max(-ST + Strike, 0) for ST in scenario]
            return np.mean(exercise)

        settlement_date = today()
        self.settings.evaluation_date = settlement_date

        daycounter = ActualActual()
        timeToMaturity = 4

        exercise_date = settlement_date + timeToMaturity * 365

        c_payoff = PlainVanillaPayoff(Call, 100)

        exercise = EuropeanExercise(exercise_date)

        risk_free_ts = flat_rate(0., daycounter)
        dividend_ts = flat_rate(0., daycounter)

        s0 = SimpleQuote(100.0)

        v0 = 0.0194
        kappa = 1.0407
        theta = 0.0586
        sigma = 0.5196
        rho = -.6747

        nb_steps_a = 100
        nb_paths = 20000
        seed = 12347

        process = HestonProcess(risk_free_ts, dividend_ts, s0, v0, kappa,
                                theta, sigma, rho, QUADRATICEXPONENTIAL)

        model = HestonModel(process)

        option = VanillaOption(c_payoff, exercise)

        engine = AnalyticHestonEngine(model, 144)

        option.set_pricing_engine(engine)

        price_fft = option.net_present_value

        engine = MCVanillaEngine(trait='MCEuropeanHestonEngine',
                                 RNG='PseudoRandom',
                                 process=process,
                                 doAntitheticVariate=True,
                                 stepsPerYear=nb_steps_a,
                                 requiredSamples=nb_paths,
                                 seed=seed)

        option.set_pricing_engine(engine)
        price_mc = option.net_present_value

        expected = 15.1796
        tolerance = .05

        self.assertAlmostEqual(price_fft, expected, delta=tolerance)
        self.assertAlmostEqual(price_mc, expected, delta=tolerance)