Exemple #1
0
    def test_united_states_calendar(self):

        uscal = UnitedStates()
        holiday_date = Date(4, Jul, 2010)

        self.assertTrue(uscal.is_holiday(holiday_date))

        uscal = UnitedStates(market=NYSE)
        holiday_date = Date(5, Sep, 2011) # Labor day

        self.assertTrue(uscal.is_holiday(holiday_date))
Exemple #2
0
class CalendarFactory:
    _lookup = dict([(cal.name(), cal) for cal in [
        TARGET(),
        NullCalendar(),
        Germany(),
        Germany(EUREX),
        Germany(FrankfurtStockExchange),
        Germany(GER_SETTLEMENT),
        Germany(EUWAX),
        Germany(XETRA),
        UnitedKingdom(),
        UnitedKingdom(EXCHANGE),
        UnitedKingdom(METALS),
        UnitedKingdom(UK_SETTLEMENT),
        UnitedStates(),
        UnitedStates(GOVERNMENTBOND),
        UnitedStates(NYSE),
        UnitedStates(NERC),
        UnitedStates(US_SETTLEMENT)
    ]])
    def test_bucketanalysis_bond(self):

        face_amount = 100.0
        redemption = 100.0
        issue_date = Date(27, January, 2011)
        maturity_date = Date(1, January, 2021)
        coupon_rate = 0.055

        fixed_bond_schedule = Schedule.from_rule(
            issue_date,
            maturity_date,
            Period(Semiannual),
            UnitedStates(market=GovernmentBond),
            Unadjusted,
            Unadjusted,
            Backward,
            False)

        bond = FixedRateBond(
            self.settlement_days,
            face_amount,
            fixed_bond_schedule,
            [coupon_rate],
            ActualActual(Bond),
            Unadjusted,
            redemption,
            issue_date
        )

        pricing_engine = DiscountingBondEngine(self.ts)
        bond.set_pricing_engine(pricing_engine)

        self.assertAlmostEqual(bond.npv, 100.82127876105724)
        quotes = [rh.quote for rh in self.rate_helpers]
        delta, gamma = bucket_analysis(quotes, [bond])
        self.assertEqual(len(quotes), len(delta))
        old_values = [q.value for q in quotes]
        delta_manual = []
        gamma_manual = []
        pv = bond.npv
        shift = 1e-4
        for v, q in zip(old_values, quotes):
            q.value = v + shift
            pv_plus = bond.npv
            q.value = v - shift
            pv_minus = bond.npv
            delta_manual.append((pv_plus - pv_minus) * 0.5 / shift)
            gamma_manual.append((pv_plus - 2 * pv + pv_minus) / shift ** 2)
            q.value = v
        assert_allclose(delta, delta_manual)
        assert_allclose(gamma, gamma_manual, atol=1e-4)
Exemple #4
0
    def test_united_states_calendar(self):

        uscal = UnitedStates()
        holiday_date = Date(4, Jul, 2010)

        self.assertTrue(uscal.is_holiday(holiday_date))

        uscal = UnitedStates(market=NYSE)
        holiday_date = Date(5, Sep, 2011)  # Labor day

        self.assertTrue(uscal.is_holiday(holiday_date))
Exemple #5
0
    def test_joint(self):

        ukcal = UnitedKingdom()
        uscal = UnitedStates()

        bank_holiday_date = Date(3, May, 2010)  #Early May Bank Holiday
        thanksgiving_holiday_date = Date(22, Nov, 2012)

        jtcal = JointCalendar(ukcal, uscal, JOINHOLIDAYS)

        self.assertFalse(jtcal.is_business_day(bank_holiday_date))
        self.assertFalse(jtcal.is_business_day(thanksgiving_holiday_date))

        jtcal = JointCalendar(ukcal, uscal, JOINBUSINESSDAYS)

        self.assertTrue(jtcal.is_business_day(bank_holiday_date))
        self.assertTrue(jtcal.is_business_day(thanksgiving_holiday_date))
Exemple #6
0
def dividendOption():
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ General Parameter for all the computation +++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    # declaration of the today's date (date where the records are done)
    todaysDate = Date(24 , Jan ,2012)	# INPUT
    Settings.instance().evaluation_date = todaysDate #!\ IMPORTANT COMMAND REQUIRED FOR ALL VALUATIONS
    calendar = UnitedStates() # INPUT
    settlement_days	= 2	# INPUT
    # Calcul of the settlement date : need to add a period of 2 days to the todays date
    settlementDate =  calendar.advance(
        todaysDate, period=Period(settlement_days, Days)
    )
    dayCounter = Actual360() # INPUT
    currency = USDCurrency() # INPUT	

    print("Date of the evaluation:			", todaysDate)
    print("Calendar used:         			", calendar.name)
    print("Number of settlement Days:		", settlement_days)
    print("Date of settlement:       		", settlementDate)
    print("Convention of day counter:		", dayCounter.name)
    print("Currency of the actual context:\t\t", currency.name)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the underlying +++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    underlying_name		= "IBM"
    underlying_price	= 191.75	# INPUT
    underlying_vol		= 0.2094	# INPUT

    print("**********************************")
    print("Name of the underlying:			", underlying_name)
    print("Price of the underlying at t0:	", underlying_price)
    print("Volatility of the underlying:		", underlying_vol)

    # For a great managing of price and vol objects --> Handle
    underlying_priceH  = SimpleQuote(underlying_price)

    # We suppose the vol constant : his term structure is flat --> BlackConstantVol object
    flatVolTS = BlackConstantVol(settlementDate, calendar, underlying_vol, dayCounter)
    
    # ++++++++++++++++++++ Description of Yield Term Structure
    
    #  Libor data record 
    print("**********************************")
    print("Description of the Libor used for the Yield Curve construction") 
    
    Libor_dayCounter = Actual360();

    liborRates = []
    liborRatesTenor = []
    # INPUT : all the following data are input : the rate and the corresponding tenor
    #		You could make the choice of more or less data
    #		--> However you have tho choice the instruments with different maturities
    liborRates = [ 0.002763, 0.004082, 0.005601, 0.006390, 0.007125, 0.007928, 0.009446, 
            0.01110]
    liborRatesTenor = [Period(tenor, Months) for tenor in [1,2,3,4,5,6,9,12]]
    
    for tenor, rate in zip(liborRatesTenor, liborRates):
        print(tenor, "\t\t\t", rate)

    # Swap data record 

    # description of the fixed leg of the swap
    Swap_fixedLegTenor	= Period(12, Months) # INPUT
    Swap_fixedLegConvention = ModifiedFollowing # INPUT
    Swap_fixedLegDayCounter = Actual360() # INPUT
    # description of the float leg of the swap
    Swap_iborIndex =  Libor(
        "USDLibor", Period(3,Months), settlement_days, USDCurrency(),
        UnitedStates(), Actual360()
    )

    print("Description of the Swap used for the Yield Curve construction")
    print("Tenor of the fixed leg:			", Swap_fixedLegTenor)
    print("Index of the floated leg: 		", Swap_iborIndex.name)
    print("Maturity		Rate				")

    swapRates = []
    swapRatesTenor = []
    # INPUT : all the following data are input : the rate and the corresponding tenor
    #		You could make the choice of more or less data
    #		--> However you have tho choice the instruments with different maturities
    swapRates = [0.005681, 0.006970, 0.009310, 0.012010, 0.014628, 0.016881, 0.018745,
                 0.020260, 0.021545]
    swapRatesTenor = [Period(i, Years) for i in range(2, 11)]
    
    for tenor, rate in zip(swapRatesTenor, swapRates):
        print(tenor, "\t\t\t", rate)
    
    # ++++++++++++++++++++ Creation of the vector of RateHelper (need for the Yield Curve construction)
    # ++++++++++++++++++++ Libor 
    LiborFamilyName = currency.name + "Libor"
    instruments = []
    for rate, tenor in zip(liborRates, liborRatesTenor):
        # Index description ___ creation of a Libor index
        liborIndex =  Libor(LiborFamilyName, tenor, settlement_days, currency, calendar,
                Libor_dayCounter)
        # Initialize rate helper	___ the DepositRateHelper link the recording rate with the Libor index													
        instruments.append(DepositRateHelper(rate, index=liborIndex))

    # +++++++++++++++++++++ Swap
    SwapFamilyName = currency.name + "swapIndex";
    for tenor, rate in zip(swapRatesTenor, swapRates):
        # swap description ___ creation of a swap index. The floating leg is described in the index 'Swap_iborIndex'
        swapIndex = SwapIndex (SwapFamilyName, tenor, settlement_days, currency, calendar,
                Swap_fixedLegTenor, Swap_fixedLegConvention, Swap_fixedLegDayCounter,
                Swap_iborIndex)
        # Initialize rate helper __ the SwapRateHelper links the swap index width his rate
        instruments.append(SwapRateHelper.from_index(rate, swapIndex))
    
    # ++++++++++++++++++  Now the creation of the yield curve

    riskFreeTS = PiecewiseYieldCurve.from_reference_date(BootstrapTrait.ZeroYield,
            Interpolator.Linear, settlementDate, instruments, dayCounter)


    # ++++++++++++++++++  build of the underlying process : with a Black-Scholes model 

    print('Creating process')

    bsProcess = BlackScholesProcess(underlying_priceH, riskFreeTS, flatVolTS)


    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the option +++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    Option_name = "IBM Option"
    maturity = Date(26, Jan, 2013)
    strike = 190
    option_type = Call 

    # Here, as an implementation exemple, we make the test with borth american and european exercise
    europeanExercise = EuropeanExercise(maturity)
    # The emericanExercise need also the settlement date, as his right to exerce the buy or call start at the settlement date!
    #americanExercise = AmericanExercise(settlementDate, maturity)
    americanExercise = AmericanExercise(maturity, settlementDate)
    
    print("**********************************")
    print("Description of the option:		", Option_name)
    print("Date of maturity:     			", maturity)
    print("Type of the option:   			", option_type)
    print("Strike of the option:		    ", strike)



    # ++++++++++++++++++ Description of the discrete dividends
    # INPUT You have to determine the frequece and rates of the discrete dividend. Here is a sollution, but she's not the only one.
    # Last know dividend:
    dividend			= 0.75 #//0.75
    next_dividend_date	= Date(10,Feb,2012)
    # HERE we have make the assumption that the dividend will grow with the quarterly croissance:
    dividendCroissance	= 1.03
    dividendfrequence	= Period(3, Months)
    dividendDates = []
    dividends = []


    d = next_dividend_date
    while d <= maturity:
        dividendDates.append(d)
        dividends.append(dividend)
        d = d + dividendfrequence
        dividend *= dividendCroissance

    print("Discrete dividends				")
    print("Dates				Dividends		")
    for date, div in zip(dividendDates, dividends):
        print(date, "		", div)

    # ++++++++++++++++++ Description of the final payoff 
    payoff = PlainVanillaPayoff(option_type, strike)

    # ++++++++++++++++++ The OPTIONS : (American and European) with their dividends description:
    dividendEuropeanOption = DividendVanillaOption(
        payoff, europeanExercise, dividendDates, dividends
    )
    dividendAmericanOption = DividendVanillaOption(
        payoff, americanExercise, dividendDates, dividends
    )


    # just too test
    europeanOption = VanillaOption(payoff, europeanExercise)
    americanOption =  VanillaOption(payoff, americanExercise)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the pricing  +++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    
    # For the european options we have a closed analytic formula: The Black Scholes:
    dividendEuropeanEngine = AnalyticDividendEuropeanEngine(bsProcess)

    # For the american option we have make the choice of the finite difference model with the CrankNicolson scheme
    #		this model need to precise the time and space step
    #		More they are greater, more the calul will be precise.
    americanGirdPoints = 600
    americanTimeSteps	= 600
    dividendAmericanEngine = FDDividendAmericanEngine('CrankNicolson', bsProcess,americanTimeSteps, americanGirdPoints)

    # just to test
    europeanEngine = AnalyticEuropeanEngine(bsProcess)
    americanEngine = FDAmericanEngine('CrankNicolson', bsProcess,americanTimeSteps, americanGirdPoints)


    # ++++++++++++++++++++ Valorisation ++++++++++++++++++++++++++++++++++++++++
        
    # Link the pricing Engine to the option
    dividendEuropeanOption.set_pricing_engine(dividendEuropeanEngine)
    dividendAmericanOption.set_pricing_engine(dividendAmericanEngine)
    
    # just	to test
    europeanOption.set_pricing_engine(europeanEngine)
    americanOption.set_pricing_engine(americanEngine)

    # Now we make all the needing calcul	
    # ... and final results
    print("NPV of the European Option with discrete dividends=0:	{:.4f}".format(dividendEuropeanOption.npv))
    print("NPV of the European Option without dividend:		{:.4f}".format(europeanOption.npv))
    print("NPV of the American Option with discrete dividends=0:	{:.4f}".format(dividendAmericanOption.npv))
    print("NPV of the American Option without dividend:		{:.4f}".format(americanOption.npv))
    # just a single test
    print("ZeroRate with a maturity at ", maturity, ": ", \
            riskFreeTS.zero_rate(maturity, dayCounter, Simple))
def dividendOption():
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ General Parameter for all the computation +++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    # declaration of the today's date (date where the records are done)
    todaysDate = Date(24, Jan, 2012)  # INPUT
    Settings.instance(
    ).evaluation_date = todaysDate  #!\ IMPORTANT COMMAND REQUIRED FOR ALL VALUATIONS
    calendar = UnitedStates()  # INPUT
    settlement_days = 2  # INPUT
    # Calcul of the settlement date : need to add a period of 2 days to the todays date
    settlementDate = calendar.advance(todaysDate,
                                      period=Period(settlement_days, Days))
    dayCounter = Actual360()  # INPUT
    currency = USDCurrency()  # INPUT

    print("Date of the evaluation:			", todaysDate)
    print("Calendar used:         			", calendar.name)
    print("Number of settlement Days:		", settlement_days)
    print("Date of settlement:       		", settlementDate)
    print("Convention of day counter:		", dayCounter.name())
    print("Currency of the actual context:\t\t", currency.name)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the underlying +++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    underlying_name = "IBM"
    underlying_price = 191.75  # INPUT
    underlying_vol = 0.2094  # INPUT

    print("**********************************")
    print("Name of the underlying:			", underlying_name)
    print("Price of the underlying at t0:	", underlying_price)
    print("Volatility of the underlying:		", underlying_vol)

    # For a great managing of price and vol objects --> Handle
    underlying_priceH = SimpleQuote(underlying_price)

    # We suppose the vol constant : his term structure is flat --> BlackConstantVol object
    flatVolTS = BlackConstantVol(settlementDate, calendar, underlying_vol,
                                 dayCounter)

    # ++++++++++++++++++++ Description of Yield Term Structure

    #  Libor data record
    print("**********************************")
    print("Description of the Libor used for the Yield Curve construction")

    Libor_dayCounter = Actual360()

    liborRates = []
    liborRatesTenor = []
    # INPUT : all the following data are input : the rate and the corresponding tenor
    #		You could make the choice of more or less data
    #		--> However you have tho choice the instruments with different maturities
    liborRates = [
        0.002763, 0.004082, 0.005601, 0.006390, 0.007125, 0.007928, 0.009446,
        0.01110
    ]
    liborRatesTenor = [
        Period(tenor, Months) for tenor in [1, 2, 3, 4, 5, 6, 9, 12]
    ]

    for tenor, rate in zip(liborRatesTenor, liborRates):
        print(tenor, "\t\t\t", rate)

    # Swap data record

    # description of the fixed leg of the swap
    Swap_fixedLegTenor = Period(12, Months)  # INPUT
    Swap_fixedLegConvention = ModifiedFollowing  # INPUT
    Swap_fixedLegDayCounter = Actual360()  # INPUT
    # description of the float leg of the swap
    Swap_iborIndex = Libor("USDLibor", Period(3, Months), settlement_days,
                           USDCurrency(), UnitedStates(), Actual360())

    print("Description of the Swap used for the Yield Curve construction")
    print("Tenor of the fixed leg:			", Swap_fixedLegTenor)
    print("Index of the floated leg: 		", Swap_iborIndex.name)
    print("Maturity		Rate				")

    swapRates = []
    swapRatesTenor = []
    # INPUT : all the following data are input : the rate and the corresponding tenor
    #		You could make the choice of more or less data
    #		--> However you have tho choice the instruments with different maturities
    swapRates = [
        0.005681, 0.006970, 0.009310, 0.012010, 0.014628, 0.016881, 0.018745,
        0.020260, 0.021545
    ]
    swapRatesTenor = [Period(i, Years) for i in range(2, 11)]

    for tenor, rate in zip(swapRatesTenor, swapRates):
        print(tenor, "\t\t\t", rate)

    # ++++++++++++++++++++ Creation of the vector of RateHelper (need for the Yield Curve construction)
    # ++++++++++++++++++++ Libor
    LiborFamilyName = currency.name + "Libor"
    instruments = []
    for rate, tenor in zip(liborRates, liborRatesTenor):
        # Index description ___ creation of a Libor index
        liborIndex = Libor(LiborFamilyName, tenor, settlement_days, currency,
                           calendar, Libor_dayCounter)
        # Initialize rate helper	___ the DepositRateHelper link the recording rate with the Libor index
        instruments.append(DepositRateHelper(rate, index=liborIndex))

    # +++++++++++++++++++++ Swap
    SwapFamilyName = currency.name + "swapIndex"
    for tenor, rate in zip(swapRatesTenor, swapRates):
        # swap description ___ creation of a swap index. The floating leg is described in the index 'Swap_iborIndex'
        swapIndex = SwapIndex(SwapFamilyName, tenor, settlement_days, currency,
                              calendar, Swap_fixedLegTenor,
                              Swap_fixedLegConvention, Swap_fixedLegDayCounter,
                              Swap_iborIndex)
        # Initialize rate helper __ the SwapRateHelper links the swap index width his rate
        instruments.append(SwapRateHelper.from_index(rate, swapIndex))

    # ++++++++++++++++++  Now the creation of the yield curve

    riskFreeTS = PiecewiseYieldCurve.from_reference_date(
        BootstrapTrait.ZeroYield, Interpolator.Linear, settlementDate,
        instruments, dayCounter)

    # ++++++++++++++++++  build of the underlying process : with a Black-Scholes model

    print('Creating process')

    bsProcess = BlackScholesProcess(underlying_priceH, riskFreeTS, flatVolTS)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the option +++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    Option_name = "IBM Option"
    maturity = Date(26, Jan, 2013)
    strike = 190
    option_type = 'call'

    # Here, as an implementation exemple, we make the test with borth american and european exercise
    europeanExercise = EuropeanExercise(maturity)
    # The emericanExercise need also the settlement date, as his right to exerce the buy or call start at the settlement date!
    #americanExercise = AmericanExercise(settlementDate, maturity)
    americanExercise = AmericanExercise(maturity, settlementDate)

    print("**********************************")
    print("Description of the option:		", Option_name)
    print("Date of maturity:     			", maturity)
    print("Type of the option:   			", option_type)
    print("Strike of the option:		    ", strike)

    # ++++++++++++++++++ Description of the discrete dividends
    # INPUT You have to determine the frequece and rates of the discrete dividend. Here is a sollution, but she's not the only one.
    # Last know dividend:
    dividend = 0.75  #//0.75
    next_dividend_date = Date(10, Feb, 2012)
    # HERE we have make the assumption that the dividend will grow with the quarterly croissance:
    dividendCroissance = 1.03
    dividendfrequence = Period(3, Months)
    dividendDates = []
    dividends = []

    d = next_dividend_date
    while d <= maturity:
        dividendDates.append(d)
        dividends.append(dividend)
        d = d + dividendfrequence
        dividend *= dividendCroissance

    print("Discrete dividends				")
    print("Dates				Dividends		")
    for date, div in zip(dividendDates, dividends):
        print(date, "		", div)

    # ++++++++++++++++++ Description of the final payoff
    payoff = PlainVanillaPayoff(option_type, strike)

    # ++++++++++++++++++ The OPTIONS : (American and European) with their dividends description:
    dividendEuropeanOption = DividendVanillaOption(payoff, europeanExercise,
                                                   dividendDates, dividends)
    dividendAmericanOption = DividendVanillaOption(payoff, americanExercise,
                                                   dividendDates, dividends)

    # just too test
    europeanOption = VanillaOption(payoff, europeanExercise)
    americanOption = VanillaOption(payoff, americanExercise)

    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++ Description of the pricing  +++++++++++++++++++++++++++++++++++++
    # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    # For the european options we have a closed analytic formula: The Black Scholes:
    dividendEuropeanEngine = AnalyticDividendEuropeanEngine(bsProcess)

    # For the american option we have make the choice of the finite difference model with the CrankNicolson scheme
    #		this model need to precise the time and space step
    #		More they are greater, more the calul will be precise.
    americanGirdPoints = 600
    americanTimeSteps = 600
    dividendAmericanEngine = FDDividendAmericanEngine('CrankNicolson',
                                                      bsProcess,
                                                      americanTimeSteps,
                                                      americanGirdPoints)

    # just to test
    europeanEngine = AnalyticEuropeanEngine(bsProcess)
    americanEngine = FDAmericanEngine('CrankNicolson', bsProcess,
                                      americanTimeSteps, americanGirdPoints)

    # ++++++++++++++++++++ Valorisation ++++++++++++++++++++++++++++++++++++++++

    # Link the pricing Engine to the option
    dividendEuropeanOption.set_pricing_engine(dividendEuropeanEngine)
    dividendAmericanOption.set_pricing_engine(dividendAmericanEngine)

    # just	to test
    europeanOption.set_pricing_engine(europeanEngine)
    americanOption.set_pricing_engine(americanEngine)

    # Now we make all the needing calcul
    # ... and final results
    print(
        "NPV of the European Option with discrete dividends=0:	{:.4f}".format(
            dividendEuropeanOption.npv))
    print("NPV of the European Option without dividend:		{:.4f}".format(
        europeanOption.npv))
    print(
        "NPV of the American Option with discrete dividends=0:	{:.4f}".format(
            dividendAmericanOption.npv))
    print("NPV of the American Option without dividend:		{:.4f}".format(
        americanOption.npv))
    # just a single test
    print("ZeroRate with a maturity at ", maturity, ": ", \
            riskFreeTS.zero_rate(maturity, dayCounter, Simple))
Exemple #8
0
    def test_pricing_bond(self):
        '''Inspired by the C++ code from http://quantcorner.wordpress.com/.'''

        settings = Settings()

        # Date setup
        calendar = TARGET()

        # Settlement date
        settlement_date = calendar.adjust(Date(28, January, 2011))

        # Evaluation date
        fixing_days = 1
        settlement_days = 1

        todays_date = calendar.advance(settlement_date, -fixing_days, Days)

        settings.evaluation_date = todays_date

        # Bound attributes
        face_amount = 100.0
        redemption = 100.0
        issue_date = Date(27, January, 2011)
        maturity_date = Date(31, August, 2020)
        coupon_rate = 0.03625
        bond_yield = 0.034921

        discounting_term_structure = YieldTermStructure(relinkable=True)
        flat_term_structure = FlatForward(
            reference_date=settlement_date,
            forward=bond_yield,
            daycounter=Actual365Fixed(
            ),  #actual_actual.ActualActual(actual_actual.Bond),
            compounding=Compounded,
            frequency=Semiannual)
        # have a look at the FixedRateBondHelper to simplify this
        # construction
        discounting_term_structure.link_to(flat_term_structure)

        #Rate
        fixed_bond_schedule = Schedule(issue_date, maturity_date,
                                       Period(Semiannual),
                                       UnitedStates(market=GOVERNMENTBOND),
                                       Unadjusted, Unadjusted, Backward, False)

        bond = FixedRateBond(settlement_days, face_amount,
                             fixed_bond_schedule, [coupon_rate],
                             ActualActual(Bond), Unadjusted, redemption,
                             issue_date)

        bond.set_pricing_engine(discounting_term_structure)

        # tests
        self.assertTrue(Date(27, January, 2011), bond.issue_date)
        self.assertTrue(Date(31, August, 2020), bond.maturity_date)
        self.assertTrue(settings.evaluation_date, bond.valuation_date)

        # the following assertion fails but must be verified
        self.assertAlmostEqual(101.1, bond.clean_price, 1)
        self.assertAlmostEqual(101.1, bond.net_present_value, 1)
        self.assertAlmostEqual(101.1, bond.dirty_price)
        self.assertAlmostEqual(0.009851, bond.accrued_amount())

        print(settings.evaluation_date)
        print('Principal: {}'.format(face_amount))
        print('Issuing date: {} '.format(bond.issue_date))
        print('Maturity: {}'.format(bond.maturity_date))
        print('Coupon rate: {:.4%}'.format(coupon_rate))
        print('Yield: {:.4%}'.format(bond_yield))
        print('Net present value: {:.4f}'.format(bond.net_present_value))
        print('Clean price: {:.4f}'.format(bond.clean_price))
        print('Dirty price: {:.4f}'.format(bond.dirty_price))
        print('Accrued coupon: {:.6f}'.format(bond.accrued_amount()))
        print('Accrued coupon: {:.6f}'.format(
            bond.accrued_amount(Date(1, March, 2011))))
Exemple #9
0
    def test_excel_example_with_floating_rate_bond(self):

        todays_date = Date(25, August, 2011)

        settings = Settings()
        settings.evaluation_date = todays_date

        calendar = TARGET()
        effective_date = Date(10, Jul, 2006)
        termination_date = calendar.advance(effective_date,
                                            10,
                                            Years,
                                            convention=Unadjusted)

        settlement_date = calendar.adjust(Date(28, January, 2011))
        settlement_days = 3  #1
        face_amount = 13749769.27  #2
        coupon_rate = 0.05
        redemption = 100.0

        float_bond_schedule = Schedule(effective_date, termination_date,
                                       Period(Annual), calendar,
                                       ModifiedFollowing, ModifiedFollowing,
                                       Backward)  #3

        flat_discounting_term_structure = YieldTermStructure(relinkable=True)
        forecastTermStructure = YieldTermStructure(relinkable=True)

        dc = Actual360()
        ibor_index = Euribor6M(forecastTermStructure)  #5

        fixing_days = 2  #6
        gearings = [1, 0.0]  #7
        spreads = [1, 0.05]  #8
        caps = []  #9
        floors = []  #10
        pmt_conv = ModifiedFollowing  #11

        issue_date = effective_date

        float_bond = FloatingRateBond(settlement_days, face_amount,
                                      float_bond_schedule, ibor_index, dc,
                                      fixing_days, gearings, spreads, caps,
                                      floors, pmt_conv, redemption, issue_date)

        flat_term_structure = FlatForward(settlement_days=1,
                                          forward=0.055,
                                          calendar=NullCalendar(),
                                          daycounter=Actual365Fixed(),
                                          compounding=Continuous,
                                          frequency=Annual)
        flat_discounting_term_structure.link_to(flat_term_structure)
        forecastTermStructure.link_to(flat_term_structure)

        engine = DiscountingBondEngine(flat_discounting_term_structure)

        float_bond.set_pricing_engine(engine)
        cons_option_vol = ConstantOptionletVolatility(settlement_days,
                                                      UnitedStates(SETTLEMENT),
                                                      pmt_conv, 0.95,
                                                      Actual365Fixed())
        coupon_pricer = BlackIborCouponPricer(cons_option_vol)

        set_coupon_pricer(float_bond, coupon_pricer)

        self.assertEquals(Date(10, Jul, 2016), termination_date)
        self.assertEquals(calendar.advance(todays_date, 3, Days),
                          float_bond.settlement_date())
        self.assertEquals(Date(11, Jul, 2016), float_bond.maturity_date)
        self.assertAlmostEqual(
            0.6944, float_bond.accrued_amount(float_bond.settlement_date()), 4)
        self.assertAlmostEqual(98.2485, float_bond.dirty_price, 4)
        self.assertAlmostEqual(13500805.2469, float_bond.npv, 4)
    def test_display(self):

        settings = Settings()

        # Date setup
        calendar = TARGET()

        # Settlement date
        settlement_date = calendar.adjust(Date(28, January, 2011))

        # Evaluation date
        fixing_days = 1
        settlement_days = 1

        todays_date = calendar.advance(
            settlement_date, -fixing_days, Days
        )

        settings.evaluation_date = todays_date

        # Bound attributes
        face_amount = 100.0
        redemption = 100.0
        issue_date = Date(27, January, 2011)
        maturity_date = Date(31, August, 2020)
        coupon_rate = 0.03625
        bond_yield = 0.034921

        flat_discounting_term_structure = YieldTermStructure()
        flat_term_structure = FlatForward(
            reference_date = settlement_date,
            forward        = bond_yield,
            daycounter     = Actual365Fixed(), #actual_actual.ActualActual(actual_actual.Bond),
            compounding    = Compounded,
            frequency      = Semiannual)
        # have a look at the FixedRateBondHelper to simplify this
        # construction
        flat_discounting_term_structure.link_to(flat_term_structure)


	#Rate
        fixed_bond_schedule = Schedule(
            issue_date,
            maturity_date,
            Period(Semiannual),
            UnitedStates(market=GOVERNMENTBOND),
            Unadjusted,
            Unadjusted,
            Backward,
            False);


        bond = FixedRateBond(
            settlement_days,
		    face_amount,
		    fixed_bond_schedule,
		    [coupon_rate],
            ActualActual(Bond),
		    Unadjusted,
            redemption,
            issue_date
        )



        d=bf.startDate(bond)

        zspd=bf.zSpread(bond, 100.0, flat_term_structure, Actual365Fixed(),
        Compounded, Semiannual, settlement_date, 1e-6, 100, 0.5)


        #Also need a test case for a PiecewiseTermStructure...
        depositData = [[ 1, Months, 4.581 ],
                       [ 2, Months, 4.573 ],
                       [ 3, Months, 4.557 ],
                       [ 6, Months, 4.496 ],
                       [ 9, Months, 4.490 ]]

        swapData = [[ 1, Years, 4.54 ],
                    [ 5, Years, 4.99 ],
                    [ 10, Years, 5.47 ],
                    [ 20, Years, 5.89 ],
                    [ 30, Years, 5.96 ]]

        rate_helpers = []

        end_of_month = True
        for m, period, rate in depositData:
            tenor = Period(m, Months)

            helper = DepositRateHelper(SimpleQuote(rate/100), tenor, settlement_days,
                     calendar, ModifiedFollowing, end_of_month,
                     Actual360())

            rate_helpers.append(helper)

        liborIndex = Libor('USD Libor', Period(6, Months), settlement_days,
                           USDCurrency(), calendar, Actual360(),
                           YieldTermStructure(relinkable=False))

        spread = SimpleQuote(0)
        fwdStart = Period(0, Days)

        for m, period, rate in swapData:

            helper = SwapRateHelper.from_tenor(
                SimpleQuote(rate/100), Period(m, Years), calendar, Annual, Unadjusted, Thirty360(), liborIndex,
                spread, fwdStart
            )

            rate_helpers.append(helper)

        ts_day_counter = ActualActual(ISDA)
        tolerance = 1.0e-15

        ts = PiecewiseYieldCurve.from_reference_date(
            BootstrapTrait.Discount, Interpolator.LogLinear, settlement_date, rate_helpers,
            ts_day_counter, tolerance)

        pyc_zspd=bf.zSpread(bond, 102.0, ts, ActualActual(ISDA),
        Compounded, Semiannual, Date(1, April, 2015), 1e-6, 100, 0.5)

        pyc_zspd_disco=bf.zSpread(bond, 95.0, ts, ActualActual(ISDA),
        Compounded, Semiannual, settlement_date, 1e-6, 100, 0.5)


        yld  = bf.yld(bond, 102.0, ActualActual(ISDA), Compounded, Semiannual, settlement_date, 1e-6, 100, 0.5)
        dur  = bf.duration(bond, yld, ActualActual(ISDA), Compounded, Semiannual, 2, settlement_date)

        yld_disco  = bf.yld(bond, 95.0, ActualActual(ISDA), Compounded, Semiannual, settlement_date, 1e-6, 100, 0.5)
        dur_disco  = bf.duration(bond, yld_disco, ActualActual(ISDA), Compounded, Semiannual, 2, settlement_date)

        self.assertEqual(round(zspd, 6), 0.001281)
        self.assertEqual(round(pyc_zspd, 4), -0.0264)
        self.assertEqual(round(pyc_zspd_disco, 4), -0.0114)

        self.assertEqual(round(yld, 4), 0.0338)
        self.assertEqual(round(yld_disco, 4), 0.0426)

        self.assertEqual(round(dur, 4), 8.0655)
        self.assertEqual(round(dur_disco, 4), 7.9702)
Exemple #11
0
    def test_bucketanalysis_bond(self):

        settings = Settings()

        calendar = TARGET()

        settlement_date = calendar.adjust(Date(28, January, 2011))
        simple_quotes = []

        fixing_days = 1
        settlement_days = 1

        todays_date = calendar.advance(settlement_date, -fixing_days, Days)

        settings.evaluation_date = todays_date

        face_amount = 100.0
        redemption = 100.0
        issue_date = Date(27, January, 2011)
        maturity_date = Date(1, January, 2021)
        coupon_rate = 0.055
        bond_yield = 0.034921

        flat_discounting_term_structure = YieldTermStructure()
        flat_term_structure = FlatForward(reference_date=settlement_date,
                                          forward=bond_yield,
                                          daycounter=Actual365Fixed(),
                                          compounding=Compounded,
                                          frequency=Semiannual)

        flat_discounting_term_structure.link_to(flat_term_structure)

        fixed_bond_schedule = Schedule.from_rule(
            issue_date, maturity_date, Period(Semiannual),
            UnitedStates(market=GovernmentBond), Unadjusted, Unadjusted,
            Backward, False)

        bond = FixedRateBond(settlement_days, face_amount,
                             fixed_bond_schedule, [coupon_rate],
                             ActualActual(Bond), Unadjusted, redemption,
                             issue_date)

        zspd = bf.zSpread(bond, 100.0, flat_term_structure, Actual365Fixed(),
                          Compounded, Semiannual, settlement_date, 1e-6, 100,
                          0.5)

        depositData = [[1, Months, 4.581], [2, Months, 4.573],
                       [3, Months, 4.557], [6, Months, 4.496],
                       [9, Months, 4.490]]

        swapData = [[1, Years, 4.54], [5, Years, 4.99], [10, Years, 5.47],
                    [20, Years, 5.89], [30, Years, 5.96]]

        rate_helpers = []

        end_of_month = True
        for m, period, rate in depositData:
            tenor = Period(m, Months)
            sq_rate = SimpleQuote(rate / 100)
            helper = DepositRateHelper(sq_rate, tenor, settlement_days,
                                       calendar, ModifiedFollowing,
                                       end_of_month, Actual360())
            simple_quotes.append(sq_rate)
            rate_helpers.append(helper)

        liborIndex = Libor('USD Libor', Period(6, Months), settlement_days,
                           USDCurrency(), calendar, Actual360())

        spread = SimpleQuote(0)
        fwdStart = Period(0, Days)

        for m, period, rate in swapData:
            sq_rate = SimpleQuote(rate / 100)
            helper = SwapRateHelper.from_tenor(sq_rate, Period(m, Years),
                                               calendar, Annual, Unadjusted,
                                               Thirty360(), liborIndex, spread,
                                               fwdStart)
            simple_quotes.append(sq_rate)
            rate_helpers.append(helper)

        ts_day_counter = ActualActual(ISDA)
        tolerance = 1.0e-15

        ts = PiecewiseYieldCurve.from_reference_date(BootstrapTrait.Discount,
                                                     Interpolator.LogLinear,
                                                     settlement_date,
                                                     rate_helpers,
                                                     ts_day_counter, tolerance)

        discounting_term_structure = YieldTermStructure()
        discounting_term_structure.link_to(ts)
        pricing_engine = DiscountingBondEngine(discounting_term_structure)
        bond.set_pricing_engine(pricing_engine)

        self.assertAlmostEqual(bond.npv, 100.83702940160767)

        ba = bucket_analysis([simple_quotes], [bond], [1], 0.0001, 1)

        self.assertTrue(2, ba)
        self.assertTrue(type(tuple), ba)
        self.assertEqual(len(simple_quotes), len(ba[0][0]))
        self.assertEqual(0, ba[0][0][8])
Exemple #12
0
class Calendars(dict):

    '''
    Wrapper for quantlib Calendar objects and methods.
    Accepts python.datetime objects and strings
    instead of pyql.quantlib dates.
    
    :adjust:            Adjust date to business day
    :advance:           Advance date by specified period
    :is_business_day:   Checks date
    
    can be used as a dict using name property of pyql.quantlib.calendar objects
    for example:
        
        Calendars()['TARGET'] returns TARGET calendar
        
    '''

    from quantlib.time.calendar import TARGET
    from quantlib.time.calendars.null_calendar import NullCalendar
    from quantlib.time.calendars.germany import (
        Germany, EUREX, FrankfurtStockExchange, SETTLEMENT as GER_SETTLEMENT,
        EUWAX, XETRA
    )
    from quantlib.time.calendars.united_kingdom import (
        EXCHANGE, METALS, SETTLEMENT as UK_SETTLEMENT,
        UnitedKingdom
    )
    from quantlib.time.calendars.united_states import (
        UnitedStates, GOVERNMENTBOND, NYSE, NERC, SETTLEMENT as US_SETTLEMENT
    )

    _lookup = dict([(cal.name(), cal) for cal in
                    [TARGET(), NullCalendar(),
                     Germany(), Germany(EUREX), Germany(
                         FrankfurtStockExchange),
                        Germany(GER_SETTLEMENT), Germany(
                            EUWAX), Germany(XETRA),
                        UnitedKingdom(),
                        UnitedKingdom(EXCHANGE), UnitedKingdom(METALS),
                        UnitedKingdom(UK_SETTLEMENT),
                        UnitedStates(),
                        UnitedStates(GOVERNMENTBOND), UnitedStates(
                            NYSE), UnitedStates(NERC),
                        UnitedStates(US_SETTLEMENT)]
                    ]
                   )

    def __init__(self, *args):

        dict.__init__(self, self._lookup)
        self.update(*args)

    @classmethod
    def adjust(cls, date, calendar=None, convention=None):

        if not calendar:
            calendar = cls.TARGET()

        elif not hasattr(calendar, "adjust"):
            return None

        if not convention:
            convention = BusinessDayConventions.Following

        qldate = qldate_from_pydate(pydate(date))
        try:
            return pydate_from_qldate(calendar.adjust(qldate, convention))
        except:
            try:
                return pydate_from_qldate(calendar().adjust(qldate,
                                                            convention))
            except:
                return None

    @classmethod
    def advance(cls, date, n, timeunit=None, calendar=None, convention=None):
        """
        Advance pydate according the specified calendar and convention
        
        :pydate:   e.g. 19600809, date(1964, 9, 29), '5-23-1993'
        :n:        integer
        :timeunit: e.g., enums.TimeUnits.Days

        usage
        -----
        
        Note 9/6/1980 is a weekend
    
        >>> Calendars.advance(19800906, 1)
        datetime.date(1980, 9, 8)
        
        """
        if not calendar:
            calendar = cls.TARGET()

        elif not hasattr(calendar, "advance"):
            return None

        if not convention:
            convention = BusinessDayConventions.Following

        if not timeunit:
            timeunit = TimeUnits.Days

        qldate = qldate_from_pydate(pydate(date))
        try:
            return pydate_from_qldate(calendar.advance(qldate, n, timeunit))

        except:
            try:
                return pydate_from_qldate(
                    calendar().advance(qldate, n, timeunit)
                )

            except:
                print("failure {}".format(qldate))
                return None

    @classmethod
    def is_business_day(cls, date, calendar=None):
        if not calendar:
            calendar = cls.TARGET()

        elif not hasattr(calendar, "advance"):
            return None

        qldate = qldate_from_pydate(pydate(date))
        try:
            return calendar.is_business_day(qldate)

        except:
            try:
                return calendar().is_business_day(qldate)

            except:
                return None