def test_parametric_gates1(): for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.RX(theta)) assert qf.almost_unitary(qf.RY(theta)) assert qf.almost_unitary(qf.RZ(theta)) for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.TX(theta)) assert qf.almost_unitary(qf.TY(theta)) assert qf.almost_unitary(qf.TZ(theta)) for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.CPHASE00(theta)) assert qf.almost_unitary(qf.CPHASE01(theta)) assert qf.almost_unitary(qf.CPHASE10(theta)) assert qf.almost_unitary(qf.CPHASE(theta)) assert qf.almost_unitary(qf.PSWAP(theta)) assert qf.gates_close(qf.I(), qf.I()) assert qf.gates_close(qf.RX(pi), qf.X()) assert qf.gates_close(qf.RY(pi), qf.Y()) assert qf.gates_close(qf.RZ(pi), qf.Z())
def test_RZZ() -> None: theta = 0.23 gate0 = qf.RZZ(theta, 0, 1) gate1 = qf.ZZ(theta / np.pi, 0, 1) assert qf.gates_close(gate0, gate1) assert qf.gates_close(gate0.H, gate1.H) assert qf.gates_close(gate0**0.12, gate1**0.12)
def test_gate_mul() -> None: # three cnots same as one swap gate0 = qf.IdentityGate([0, 1]) gate1 = qf.CNot(1, 0) gate2 = qf.CNot(0, 1) gate3 = qf.CNot(1, 0) gate = gate1 @ gate0 gate = gate2 @ gate gate = gate3 @ gate assert qf.gates_close(gate, qf.Swap(0, 1)) # Again, but with labels gate0 = qf.IdentityGate(["a", "b"]) gate1 = qf.CNot("b", "a") gate2 = qf.CNot("a", "b") gate3 = qf.CNot("b", "a") gate = gate1 @ gate0 gate = gate2 @ gate gate = gate3 @ gate assert qf.gates_close(gate, qf.Swap("a", "b")) gate4 = qf.X("a") _ = gate4 @ gate with pytest.raises(NotImplementedError): _ = gate4 @ 3 # type: ignore
def test_CH() -> None: gate1 = qf.CH(0, 1) # I picked up this circuit for a CH gate from qiskit # qiskit/extensions/standard/ch.py # But it clearly far too long. CH is locally equivalent to CNOT, # so requires only one CNOT gate. circ2 = qf.Circuit([ qf.H(1), qf.S_H(1), qf.CNot(0, 1), qf.H(1), qf.T(1), qf.CNot(0, 1), qf.T(1), qf.H(1), qf.S(1), qf.X(1), qf.S(0), ]) assert qf.gates_close(gate1, circ2.asgate()) # Here's a better decomposition circ1 = qf.Circuit([qf.YPow(+0.25, 1), qf.CNot(0, 1), qf.YPow(-0.25, 1)]) assert qf.gates_close(gate1, circ1.asgate()) assert qf.circuits_close(circ1, circ2)
def test_gatemul(): # three cnots same as one swap gate0 = qf.identity_gate([0, 1]) gate1 = qf.CNOT(1, 0) gate2 = qf.CNOT(0, 1) gate3 = qf.CNOT(1, 0) gate = gate0 gate = gate1 @ gate gate = gate2 @ gate gate = gate3 @ gate assert qf.gates_close(gate, qf.SWAP()) # Again, but with labels gate0 = qf.identity_gate(['a', 'b']) gate1 = qf.CNOT('b', 'a') gate2 = qf.CNOT('a', 'b') gate3 = qf.CNOT('b', 'a') gate = gate0 gate = gate1 @ gate gate = gate2 @ gate gate = gate3 @ gate assert qf.gates_close(gate, qf.SWAP('a', 'b')) gate4 = qf.X('a') gate = gate4 @ gate with pytest.raises(NotImplementedError): gate = gate4 @ 3
def test_gate_angle(): gate0 = qf.random_gate(1) gate1 = qf.random_gate(1) qf.gate_angle(gate0, gate1) assert not qf.gates_close(gate0, gate1) assert qf.gates_close(gate0, gate0)
def test_stdgates(gatet: Type[qf.StdGate]) -> None: # Test creation gate = _randomize_gate(gatet) # Test correct number of qubits assert gate.qubit_nb == gatet.cv_qubit_nb # Test hermitian conjugate inv_gate = gate.H gate.tensor inv_gate.tensor # Test inverse eye = gate @ inv_gate assert qf.gates_close(qf.IdentityGate(range(gate.qubit_nb)), eye) assert qf.gates_phase_close(qf.IdentityGate(range(gate.qubit_nb)), eye) # Test pow assert qf.gates_close(gate ** -1, inv_gate) assert qf.gates_close((gate ** 0.5) ** 2, gate) assert qf.gates_close((gate ** 0.3) @ (gate ** 0.7), gate) hgate = qf.Unitary((gate ** 0.5).tensor, gate.qubits) assert qf.gates_close(hgate @ hgate, gate)
def test_gate_angle() -> None: gate0 = qf.RandomGate([1]) gate1 = qf.RandomGate([1]) qf.gate_angle(gate0, gate1) assert not qf.gates_close(gate0, gate1) assert qf.gates_close(gate0, gate0)
def test_cphase_gates(): for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) gate11 = qf.control_gate(0, qf.PHASE(theta, 1)) assert qf.gates_close(gate11, qf.CPHASE(theta, 0, 1)) gate01 = qf.conditional_gate(0, qf.PHASE(theta, 1), qf.I(1)) assert qf.gates_close(gate01, qf.CPHASE01(theta)) gate00 = qf.identity_gate(2) gate00 = qf.X(0) @ gate00 gate00 = qf.X(1) @ gate00 gate00 = gate11 @ gate00 gate00 = qf.X(0) @ gate00 gate00 = qf.X(1) @ gate00 assert qf.gates_close(gate00, qf.CPHASE00(theta)) gate10 = qf.identity_gate(2) gate10 = qf.X(0) @ gate10 gate10 = qf.X(1) @ gate10 gate10 = gate01 @ gate10 gate10 = qf.X(0) @ gate10 gate10 = qf.X(1) @ gate10 assert qf.gates_close(gate10, qf.CPHASE10(theta))
def test_pswap(): for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.PSWAP(theta)) assert qf.gates_close(qf.SWAP(), qf.PSWAP(0)) assert qf.gates_close(qf.ISWAP(), qf.PSWAP(pi / 2))
def test_CV() -> None: gate0 = qf.CNot(0, 1)**0.5 gate1 = qf.CV(0, 1) assert qf.gates_close(gate0, gate1) gate2 = qf.CV_H(0, 1) assert qf.gates_close(gate0.H, gate2) assert qf.gates_close(gate1.H.H, gate1)
def test_gate_permute(): gate0 = qf.CNOT(0, 1) gate1 = qf.CNOT(1, 0) assert not qf.gates_close(gate0, gate1) gate2 = gate1.permute([0, 1]) assert gate2.qubits == (0, 1) assert qf.gates_close(gate1, gate2)
def test_can_to_cnot() -> None: gate = qf.Can(0.3, 0.23, 0.22, 0, 1) circ = qf.Circuit(qf.translate_can_to_cnot(gate)) # type: ignore assert qf.gates_close(gate, circ.asgate()) gate = qf.Can(0.3, 0.23, 0.0, 0, 1) circ = qf.Circuit(qf.translate_can_to_cnot(gate)) # type: ignore print(qf.canonical_decomposition(circ.asgate())) assert qf.gates_close(gate, circ.asgate())
def test_circuit_to_qutip() -> None: q0, q1, q2 = 0, 1, 2 circ0 = qf.Circuit() circ0 += qf.I(q0) circ0 += qf.Ph(0.1, q0) circ0 += qf.X(q0) circ0 += qf.Y(q1) circ0 += qf.Z(q0) circ0 += qf.S(q1) circ0 += qf.T(q2) circ0 += qf.H(q0) circ0 += qf.H(q1) circ0 += qf.H(q2) circ0 += qf.CNot(q0, q1) circ0 += qf.CNot(q1, q0) circ0 += qf.Swap(q0, q1) circ0 += qf.ISwap(q0, q1) circ0 += qf.CCNot(q0, q1, q2) circ0 += qf.CSwap(q0, q1, q2) circ0 == qf.I(q0) circ0 += qf.Rx(0.1, q0) circ0 += qf.Ry(0.2, q1) circ0 += qf.Rz(0.3, q2) circ0 += qf.V(q0) circ0 += qf.H(q1) circ0 += qf.CY(q0, q1) circ0 += qf.CZ(q0, q1) circ0 += qf.CS(q1, q2) circ0 += qf.CT(q0, q1) circ0 += qf.SqrtSwap(q0, q1) circ0 += qf.SqrtISwap(q0, q1) circ0 += qf.CCNot(q0, q1, q2) circ0 += qf.CSwap(q0, q1, q2) circ0 += qf.CPhase(0.1, q1, q2) # Not yet supported # circ0 += qf.B(q1, q2) # circ0 += qf.Swap(q1, q2) ** 0.1 qbc = xqutip.circuit_to_qutip(circ0) U = gate_sequence_product(qbc.propagators()) gate0 = qf.Unitary(U.full(), qubits=[0, 1, 2]) assert qf.gates_close(gate0, circ0.asgate()) circ1 = xqutip.qutip_to_circuit(qbc) assert qf.gates_close(circ0.asgate(), circ1.asgate())
def test_gate_inverse(): inv = qf.S().H eye = qf.S() @ inv assert qf.gates_close(eye, qf.I()) inv = qf.ISWAP().H eye = qf.ISWAP() @ inv assert qf.gates_close(eye, qf.identity_gate(2))
def test_EXCH(): t = random.uniform(-2, +2) gate = qf.EXCH(t) assert qf.almost_unitary(gate) inv = gate.H assert type(gate) == type(inv) assert qf.gates_close(qf.identity_gate(2), inv @ gate) gate1 = qf.CANONICAL(t, t, t) assert qf.gates_close(gate, gate1)
def test_piswap(): for _ in range(REPS): theta = random.uniform(-4 * pi, +4 * pi) assert qf.almost_unitary(qf.PISWAP(theta)) for _ in range(REPS): theta = random.uniform(0, +pi) assert qf.gates_close(qf.PISWAP(0), qf.identity_gate(2)) assert qf.gates_close(qf.PISWAP(pi / 4), qf.ISWAP())
def test_CNotPow() -> None: q0, q1 = 2, 3 for _ in range(REPS): t = random.uniform(-4, +4) gate0 = qf.CNotPow(t, q0, q1) gate1 = qf.ControlGate([q0], qf.XPow(t, q1)) gate2 = qf.CNot(q0, q1)**t gate3 = qf.CNotPow(1, q0, q1)**t assert qf.gates_close(gate0, gate1) assert qf.gates_close(gate0, gate2) assert qf.gates_close(gate0, gate3)
def test_inverse_1qubit(): # These gate pairs are inverses of each other gate_names = [('S', 'S_H'), ('T', 'T_H')] for name0, name1 in gate_names: gate0 = qf.STDGATES[name0]() gate1 = qf.STDGATES[name1]() assert qf.gates_close(gate0, gate1.H) assert qf.gates_close(gate0.H, gate1) assert qf.gates_close(gate0, gate1**-1) assert qf.gates_close(gate0**-1, gate1)
def test_PauliGate_pow() -> None: alpha = 0.4 gate0 = qf.PauliGate(qf.sZ(0), alpha) gate1 = gate0 ** 0.3 gate2 = qf.Unitary(gate0.tensor, gate0.qubits) ** 0.3 assert qf.gates_close(gate1, gate2) assert qf.gates_close(gate1.H, gate2 ** -1) gate3 = qf.unitary_from_hamiltonian(gate0.hamiltonian, qubits=gate0.qubits) assert qf.gates_close(gate0, gate3) s = str(gate0) print(s)
def test_gate_permute() -> None: gate0 = qf.CNot(0, 1) gate1 = qf.CNot(1, 0) assert not qf.gates_close(gate0, gate1) gate2 = gate1.permute([0, 1]) assert gate2.qubits == (0, 1) assert qf.gates_close(gate1, gate2) gate3 = qf.ISwap(0, 1) gate4 = gate3.permute([1, 0]) assert qf.gates_close(gate3, gate4)
def test_rn() -> None: theta = 1.23 gate = qf.Rn(theta, 1, 0, 0, "q0") assert qf.gates_close(gate, qf.Rx(theta, "q0")) gate = qf.Rn(theta, 0, 1, 0, "q0") assert qf.gates_close(gate, qf.Ry(theta, "q0")) gate = qf.Rn(theta, 0, 0, 1, "q0") assert qf.gates_close(gate, qf.Rz(theta, "q0")) gate = qf.Rn(np.pi, 1 / np.sqrt(2), 0, 1 / np.sqrt(2), "q0") assert qf.gates_close(gate, qf.H("q0"))
def test_FSim() -> None: for _ in range(REPS): theta = random.uniform(-np.pi, +np.pi) phi = random.uniform(-np.pi, +np.pi) gate0 = qf.FSim(theta, phi, 0, 1) # Test with decomposition from Cirq. circ = qf.Circuit() circ += qf.XX(theta / np.pi, 0, 1) circ += qf.YY(theta / np.pi, 0, 1) circ += qf.CZ(0, 1)**(-phi / np.pi) gate1 = circ.asgate() assert qf.gates_close(gate0, gate1) assert qf.gates_close(gate1.H, gate0.H)
def test_canonical_decomposition() -> None: for tt1 in range(0, 6): for tt2 in range(tt1): for tt3 in range(tt2): t1, t2, t3 = tt1 / 12, tt2 / 12, tt3 / 12 if t3 == 0 and t1 > 0.5: continue coords = np.asarray((t1, t2, t3)) circ0 = qf.Circuit() circ0 += qf.RandomGate([0]) circ0 += qf.RandomGate([1]) circ0 += qf.Can(t1, t2, t3, 0, 1) circ0 += qf.RandomGate([0]) circ0 += qf.RandomGate([1]) gate0 = circ0.asgate() circ1 = qf.canonical_decomposition(gate0) assert qf.gates_close(gate0, circ1.asgate()) canon = circ1[1] new_coords = np.asarray( [canon.param(n) for n in ["tx", "ty", "tz"]]) assert np.allclose(coords, np.asarray(new_coords)) coords2 = qf.canonical_coords(gate0) assert np.allclose(coords, np.asarray(coords2))
def test_euler_decomposition() -> None: gate0 = qf.RandomGate([1]) for order in ["XYX", "XZX", "YXY", "YZY", "ZXZ", "ZYZ"]: circ1 = qf.euler_decomposition(gate0, euler=order) gate1 = circ1.asgate() assert qf.gates_close(gate0, gate1)
def test_parametric_TX_TY_TZ(): gate = qf.I() gate = qf.TZ(1 / 2) @ gate gate = qf.TX(1 / 2) @ gate gate = qf.TZ(1 / 2) @ gate assert qf.gates_close(gate, qf.H())
def test_canonical_decomposition(): for tt1 in range(0, 10): for tt2 in range(tt1): for tt3 in range(tt2): t1, t2, t3 = tt1 / 20, tt2 / 20, tt3 / 20 if t3 == 0 and t1 > 0.5: continue coords = np.asarray((t1, t2, t3)) print('b') circ0 = qf.Circuit() circ0 += qf.ZYZ(0.2, 0.2, 0.2, q0=0) circ0 += qf.ZYZ(0.3, 0.3, 0.3, q0=1) circ0 += qf.CANONICAL(t1, t2, t3, 0, 1) circ0 += qf.ZYZ(0.15, 0.2, 0.3, q0=0) circ0 += qf.ZYZ(0.15, 0.22, 0.3, q0=1) gate0 = circ0.asgate() print('c') circ1 = qf.canonical_decomposition(gate0) assert qf.gates_close(gate0, circ1.asgate()) print('d') print(circ1) canon = circ1.elements[6] new_coords = np.asarray( [canon.params[n] for n in ['tx', 'ty', 'tz']]) assert np.allclose(coords, np.asarray(new_coords)) coords2 = qf.canonical_coords(gate0) assert np.allclose(coords, np.asarray(coords2)) print('>') print()
def test_stdgates_repr(gatet: Type[qf.StdGate]) -> None: gate0 = _randomize_gate(gatet) rep = repr(gate0) gate1 = eval(rep, qf.StdGate.cv_stdgates) assert type(gate0) == type(gate1) assert qf.gates_close(gate0, gate1)
def test_inverse_random(): K = 4 for _ in range(REPS): gate = qf.random_gate(K) inv = gate.H gate = inv @ gate assert qf.gates_close(qf.identity_gate(4), gate)
def test_cirq_to_circuit_0_7() -> None: q0 = cq.LineQubit(0) q1 = cq.LineQubit(1) gate = cirq_to_circuit(cq.Circuit(cq.rx(0.5).on(q0)))[0] assert isinstance(gate, qf.XPow) assert gate.param("t") == 0.5 / pi gate = cirq_to_circuit(cq.Circuit(cq.ry(0.5).on(q0)))[0] assert isinstance(gate, qf.YPow) assert gate.param("t") == 0.5 / pi gate = cirq_to_circuit(cq.Circuit(cq.rz(0.5).on(q0)))[0] assert isinstance(gate, qf.ZPow) assert gate.param("t") == 0.5 / pi # gate = cirq_to_circuit(cq.Circuit(cq.IdentityGate(2).on(q0, q1)))[0] op = (cq.PhasedISwapPowGate()**0.5).on(q0, q1) circ = cirq_to_circuit(cq.Circuit(op)) assert qf.gates_close(circ.asgate(), qf.Givens(0.5 * pi / 2, 0, 1)) op = cq.PhasedXZGate(x_exponent=0.125, z_exponent=0.25, axis_phase_exponent=0.375).on(q0) circ = cirq_to_circuit(cq.Circuit(op)) assert len(circ) == 3