def test_kraus_to_ptm_qubit(self):
        p_damp = 0.5
        damp_kraus_mat = np.array([[[1, 0], [0, np.sqrt(1 - p_damp)]],
                                   [[0, np.sqrt(p_damp)], [0, 0]]])

        gm_qubit_basis = (bases.gell_mann(2), )
        gm_two_qubit_basis = gm_qubit_basis * 2

        damp_op = Operation.from_kraus(damp_kraus_mat, gm_qubit_basis)
        damp_ptm = damp_op.ptm(gm_qubit_basis)

        expected_mat = np.array([[1, 0, 0, 0], [0,
                                                np.sqrt(1 - p_damp), 0, 0],
                                 [0, 0, np.sqrt(1 - p_damp), 0],
                                 [p_damp, 0, 0, 1 - p_damp]])
        assert np.allclose(damp_ptm, expected_mat)

        with pytest.raises(ValueError, match=r'.* must be list-like, .*'):
            damp_op.set_bases(bases.gell_mann(2), bases.gell_mann(2))

        cz_kraus_mat = np.diag([1, 1, 1, -1])
        cz = Operation.from_kraus(cz_kraus_mat, gm_two_qubit_basis)
        cz_ptm = cz.ptm(gm_two_qubit_basis)

        assert cz_ptm.shape == (4, 4, 4, 4)
        cz_ptm = cz_ptm.reshape((16, 16))
        assert np.all(cz_ptm.round(3) <= 1)
        assert np.all(cz_ptm.round(3) >= -1)
        assert np.isclose(np.sum(cz_ptm[0, :]), 1)
        assert np.isclose(np.sum(cz_ptm[:, 0]), 1)
    def test_lindblad_singlequbit(self):
        ham = random_hermitian_matrix(2, seed=56)
        lindblad_ops = np.array([
            [[0, 0.1], [0, 0]],
            [[0, 0], [0, 0.33]],
        ])
        t1 = 10
        t2 = 25
        b1 = (bases.general(2), )
        b2 = (bases.gell_mann(2), )
        op1 = Operation.from_lindblad_form(t1,
                                           b1,
                                           b2,
                                           hamiltonian=ham,
                                           lindblad_ops=lindblad_ops)
        op2 = Operation.from_lindblad_form(t2,
                                           b2,
                                           b1,
                                           hamiltonian=ham,
                                           lindblad_ops=lindblad_ops)
        op = Operation.from_lindblad_form(t1 + t2,
                                          b1,
                                          hamiltonian=ham,
                                          lindblad_ops=lindblad_ops)
        dm = random_hermitian_matrix(2, seed=3)
        state1 = PauliVector.from_dm(dm, b1)
        state2 = PauliVector.from_dm(dm, b1)

        op1(state1, 0)
        op2(state1, 0)
        op(state2, 0)
        assert np.allclose(state1.to_pv(), state2.to_pv())
    def test_kraus_to_ptm_qubit(self):
        p_damp = 0.5
        damp_kraus_mat = np.array(
            [[[1, 0], [0, np.sqrt(1 - p_damp)]],
             [[0, np.sqrt(p_damp)], [0, 0]]])

        gm_qubit_basis = (bases.gell_mann(2),)
        gm_two_qubit_basis = gm_qubit_basis + gm_qubit_basis

        damp_op = Operation.from_kraus(damp_kraus_mat, 2)
        damp_ptm = damp_op.set_bases(bases_in=gm_qubit_basis,
                                     bases_out=gm_qubit_basis).ptm

        expected_mat = np.array([[1, 0, 0, 0],
                                 [0, np.sqrt(1-p_damp), 0, 0],
                                 [0, 0, np.sqrt(1-p_damp), 0],
                                 [p_damp, 0, 0, 1-p_damp]])
        assert np.allclose(damp_ptm, expected_mat)

        with pytest.raises(ValueError, match=r'.* should be a list, .*'):
            damp_op.set_bases(bases.gell_mann(2), bases.gell_mann(2))

        cz_kraus_mat = np.diag([1, 1, 1, -1])
        cz = Operation.from_kraus(cz_kraus_mat, 2).set_bases(gm_two_qubit_basis,
                                                             gm_two_qubit_basis)

        assert cz.ptm.shape == (4, 4, 4, 4)
        cz_ptm = cz.ptm.reshape((16, 16))
        assert np.all(cz_ptm.round(3) <= 1)
        assert np.all(cz_ptm.round(3) >= -1)
        assert np.isclose(np.sum(cz_ptm[0, :]), 1)
        assert np.isclose(np.sum(cz_ptm[:, 0]), 1)
 def test_lindblad_time_inverse(self):
     ham = random_hermitian_matrix(2, seed=4)
     b = (bases.general(2), )
     op_plus = Operation.from_lindblad_form(20, b, hamiltonian=ham)
     op_minus = Operation.from_lindblad_form(20, b, hamiltonian=-ham)
     dm = random_hermitian_matrix(2, seed=5)
     state = PauliVector.from_dm(dm, b)
     op_plus(state, 0)
     op_minus(state, 0)
     assert np.allclose(state.to_dm(), dm)
    def test_lindblad_two_qubit(self):
        b = (bases.general(2), )
        id = np.array([[1, 0], [0, 1]])
        ham1 = random_hermitian_matrix(2, seed=6)
        ham2 = random_hermitian_matrix(2, seed=7)
        ham = np.kron(ham1, id).reshape(2, 2, 2, 2) + \
              np.kron(id, ham2).reshape(2, 2, 2, 2)
        dm = random_hermitian_matrix(4, seed=3)
        op1 = Operation.from_lindblad_form(25, b, hamiltonian=ham1)
        op2 = Operation.from_lindblad_form(25, b, hamiltonian=ham2)
        op = Operation.from_lindblad_form(25, b * 2, hamiltonian=ham)
        state1 = PauliVector.from_dm(dm, b * 2)
        state2 = PauliVector.from_dm(dm, b * 2)
        op1(state1, 0)
        op2(state1, 1)
        op(state2, 0, 1)
        assert np.allclose(state1.to_pv(), state2.to_pv())

        ops1 = np.array([
            [[0, 0.1], [0, 0]],
            [[0, 0], [0, 0.33]],
        ])
        ops2 = np.array([
            [[0, 0.15], [0, 0]],
            [[0, 0], [0, 0.17]],
        ])
        ops = [np.kron(op, id).reshape(2, 2, 2, 2) for op in ops1] +\
              [np.kron(id, op).reshape(2, 2, 2, 2) for op in ops2]
        op1 = Operation.from_lindblad_form(25, b, lindblad_ops=ops1)
        op2 = Operation.from_lindblad_form(25, b, lindblad_ops=ops2)
        op = Operation.from_lindblad_form(25, b * 2, lindblad_ops=ops)
        state1 = PauliVector.from_dm(dm, b * 2)
        state2 = PauliVector.from_dm(dm, b * 2)
        op1(state1, 0)
        op2(state1, 1)
        op(state2, 0, 1)
        assert np.allclose(state1.to_pv(), state2.to_pv())

        op1 = Operation.from_lindblad_form(25,
                                           b,
                                           hamiltonian=ham1,
                                           lindblad_ops=ops1)
        op2 = Operation.from_lindblad_form(25,
                                           b,
                                           hamiltonian=ham2,
                                           lindblad_ops=ops2)
        op = Operation.from_lindblad_form(25,
                                          b * 2,
                                          hamiltonian=ham,
                                          lindblad_ops=ops)
        state1 = PauliVector.from_dm(dm, b * 2)
        state2 = PauliVector.from_dm(dm, b * 2)
        op1(state1, 0)
        op2(state1, 1)
        op(state2, 0, 1)
        assert np.allclose(state1.to_pv(), state2.to_pv())
Exemple #6
0
def phase_damping(total_rate=None, *, x_deph_rate=None,
                  y_deph_rate=None, z_deph_rate=None):
    if total_rate is not None:
        kraus = np.array([[[1, 0], [0, np.sqrt(1 - total_rate)]],
                          [[0, 0], [0, np.sqrt(total_rate)]]])
        return Operation.from_kraus(kraus, 2)
    else:
        if None in (x_deph_rate, y_deph_rate, z_deph_rate):
            raise ValueError(
                "Either the total_rate or the dephasing rates along each of "
                "the three axis must be provided")
        ptm = np.diag(
            [1, 1 - x_deph_rate, 1 - y_deph_rate, 1 - z_deph_rate])
        return Operation.from_ptm(ptm, (bases.gell_mann(2),))
Exemple #7
0
    def test_kraus_to_ptm_errors(self):
        qutrit_basis = (bases.general(3), )
        cz_kraus_mat = np.diag([1, 1, 1, -1])
        kraus_op = Operation.from_kraus(cz_kraus_mat, 2)

        wrong_dim_kraus = np.random.random((4, 4, 2, 2))
        with pytest.raises(ValueError):
            _ = Operation.from_kraus(wrong_dim_kraus, 2)
        not_sqr_kraus = np.random.random((4, 2, 3))
        with pytest.raises(ValueError):
            _ = Operation.from_kraus(not_sqr_kraus, 2)
        with pytest.raises(ValueError):
            _ = Operation.from_kraus(cz_kraus_mat, 3)
        with pytest.raises(ValueError):
            _ = kraus_op.set_bases(qutrit_basis + qutrit_basis)
Exemple #8
0
def amp_damping(total_rate=None, *, exc_rate=None, damp_rate=None):
    if total_rate is not None:
        kraus = np.array([[[1, 0], [0, np.sqrt(1 - total_rate)]],
                          [[0, np.sqrt(total_rate)], [0, 0]]])
        return Operation.from_kraus(kraus, 2)
    else:
        if None in (exc_rate, damp_rate):
            raise ValueError(
                "Either the total_rate or both the exc_rate and damp_rate "
                "must be provided")
        comb_rate = exc_rate + damp_rate
        ptm = np.array([[1, 0, 0, 0], [0, np.sqrt((1 - comb_rate)), 0, 0],
                        [0, 0, np.sqrt((1 - comb_rate)), 0],
                        [2 * damp_rate - comb_rate, 0, 0, 1 - comb_rate]])
        return Operation.from_ptm(ptm, (bases.gell_mann(2), ))
    def test_kraus_to_ptm_errors(self):
        qutrit_basis = (bases.general(3),)
        cz_kraus_mat = np.diag([1, 1, 1, -1])
        kraus_op = Operation.from_kraus(cz_kraus_mat, 2)

        wrong_dim_kraus = np.random.random((4, 4, 2, 2))
        with pytest.raises(ValueError):
            _ = Operation.from_kraus(wrong_dim_kraus, 2)
        not_sqr_kraus = np.random.random((4, 2, 3))
        with pytest.raises(ValueError):
            _ = Operation.from_kraus(not_sqr_kraus, 2)
        with pytest.raises(ValueError):
            _ = Operation.from_kraus(cz_kraus_mat, 3)
        with pytest.raises(ValueError):
            _ = kraus_op.set_bases(qutrit_basis + qutrit_basis)
Exemple #10
0
def phase_flipping(flip_rate):
    # This is actually equivalent to the phase damping
    matrix = np.array([
        np.sqrt(flip_rate) * _PAULI["I"],
        np.sqrt(1 - flip_rate) * _PAULI["Z"]
    ])
    return Operation.from_kraus(matrix, 2)
Exemple #11
0
def phase_damping(total_rate=None,
                  *,
                  x_deph_rate=None,
                  y_deph_rate=None,
                  z_deph_rate=None):
    if total_rate is not None:
        kraus = np.array([[[1, 0], [0, np.sqrt(1 - total_rate)]],
                          [[0, 0], [0, np.sqrt(total_rate)]]])
        return Operation.from_kraus(kraus, 2)
    else:
        if None in (x_deph_rate, y_deph_rate, z_deph_rate):
            raise ValueError(
                "Either the total_rate or the dephasing rates along each of "
                "the three axis must be provided")
        ptm = np.diag([1, 1 - x_deph_rate, 1 - y_deph_rate, 1 - z_deph_rate])
        return Operation.from_ptm(ptm, (bases.gell_mann(2), ))
Exemple #12
0
def test_create_timed_model():
    basis = (bases.general(2), )

    class SampleModel(Model):
        dim = 2

        @Model.gate(duration=20)
        def rotate_y(self, qubit):
            return (
                self.wait(qubit, 10),
                ParametrizedOperation(lib.rotate_y, basis),
                self.wait(qubit, 10),
            )

        @Model.gate(duration='t_twoqubit')
        def cphase(self, qubit_static, qubit_fluxed):
            return (
                self.wait(qubit_static, 0.5 * self.p('t_twoqubit')),
                self.wait(qubit_fluxed, 0.5 * self.p('t_twoqubit')),
                lib.cphase(pi).at(qubit_static, qubit_fluxed),
                self.wait(qubit_static, 0.5 * self.p('t_twoqubit')),
                self.wait(qubit_fluxed, 0.5 * self.p('t_twoqubit')),
            )

        @Model.gate(duration=lambda qubit, setup: 600
                    if qubit == 'D0' else 400)
        def strange_duration_gate(self, qubit):
            return lib.rotate_y(pi)

        @staticmethod
        def _filter_wait_placeholders(operation):
            return Operation.from_sequence([
                unit for unit in operation.units()
                if not isinstance(unit.operation, WaitPlaceholder)
            ])

        def finalize(self, circuit, bases_in=None):
            return circuit.finalize([self._filter_wait_placeholders], bases_in)

    sample_setup = Setup("""
    setup:
    - t_twoqubit: 40
    """)

    m = SampleModel(sample_setup)
    cnot = m.rotate_y('D0', angle=0.5*pi) + m.cphase('D0', 'D1') + \
           m.rotate_y('D0', angle=-0.5*pi)
    cnot = m.finalize(cnot)

    assert cnot.operation.ptm(basis * 2, basis * 2) == approx(
        Operation.from_sequence(
            lib.rotate_y(0.5 * pi).at(0),
            lib.cphase(pi).at(0, 1),
            lib.rotate_y(-0.5 * pi).at(0),
        ).ptm(basis * 2, basis * 2))

    gate1 = m.strange_duration_gate('D0')
    assert gate1.duration == 600
    gate2 = m.strange_duration_gate('D1')
    assert gate2.duration == 400
Exemple #13
0
def rotate_euler(phi, theta, lamda):
    """A perfect single qubit rotation described by three Euler angles.

    Unitary operation, that corresponds to this rotation, is:

    .. math::

         U = R_Z(\\phi) \\cdot R_X(\\theta) \\cdot R_Z(\\lambda)

    Parameters
    ----------
    phi, theta, lamda: float
        Euler rotation angles in radians.

    Returns
    -------
    Operation
        An operation, that corresponds to the rotation.
    """
    exp_phi, exp_lambda = np.exp(1j * phi), np.exp(1j * lamda)
    sin_theta, cos_theta = np.sin(theta / 2), np.cos(theta / 2)
    matrix = np.array([
        [cos_theta, -1j * exp_lambda * sin_theta, 0],
        [-1j * exp_phi * sin_theta, exp_phi * exp_lambda * cos_theta, 0],
        [0, 0, 1]])
    return Operation.from_kraus(matrix, 3)
Exemple #14
0
def amp_damping(p0_up, p1_up, p1_down, p2_down):
    """
    A gate, that excites or relaxes a qubit with a certain probability.

    Parameters
    ----------
    p0_up : float
        Probability to excite to state 1, being in the state 0
    p1_up : float
        Probability to excite to state 2, being in the state 1
    p1_down : float
        Probability to relax to state 0, being in the state 1
    p2_down : float
        Probability to relax to state 1, being in the state 2

    Returns
    -------
        quantumsim.operation._PTMOperation
    """
    ptm = np.identity(9, dtype=float)
    ptm[:3, :3] = [[1. - p0_up, p1_down, 0.],
                   [p0_up, 1. - p1_down - p1_up, p2_down],
                   [0., p1_up, 1 - p2_down]]
    basis = (bases.general(3), )
    return Operation.from_ptm(ptm, basis, basis)
Exemple #15
0
def rotate_euler(phi, theta, lamda):
    """A perfect single qubit rotation described by three Euler angles.

    Unitary operation, that corresponds to this rotation, is:

    .. math::

         U = R_Z(\\phi) \\cdot R_X(\\theta) \\cdot R_Z(\\lambda)

    Parameters
    ----------
    phi, theta, lamda: float
        Euler rotation angles in radians.

    Returns
    -------
    Operation
        An operation, that corresponds to the rotation.
    """
    exp_phi, exp_lambda = np.exp(1j * phi), np.exp(1j * lamda)
    sin_theta, cos_theta = np.sin(theta / 2), np.cos(theta / 2)
    matrix = np.array([
        [cos_theta, -1j * exp_lambda * sin_theta],
        [-1j * exp_phi * sin_theta, exp_phi * exp_lambda * cos_theta]])
    return Operation.from_kraus(matrix, 2)
    def test_chain_compile_leaking(self):
        b = bases.general(3)
        chain0 = Operation.from_sequence(
            lib3.rotate_x(0.5 * np.pi).at(2),
            lib3.cphase(leakage_rate=0.1).at(0, 2),
            lib3.cphase(leakage_rate=0.1).at(1, 2),
            lib3.rotate_x(-0.75 * np.pi).at(2),
            lib3.rotate_x(0.25 * np.pi).at(2),
        )
        b0 = b.subbasis([0])
        b01 = b.subbasis([0, 1])
        b0134 = b.subbasis([0, 1, 3, 4])
        chain1 = chain0.compile((b0, b0, b0134), (b, b, b))
        assert isinstance(chain1, _Chain)
        # Ancilla is not leaking here
        anc_basis = chain1._units[1].operation.bases_out[1]
        for label in anc_basis.labels:
            assert '2' not in label

        chain2 = chain0.compile((b01, b01, b0134), (b, b, b))
        # Ancilla is leaking here
        assert isinstance(chain2, _Chain)
        anc_basis = chain2._units[1].operation.bases_out[1]
        for label in '2', 'X20', 'Y20', 'X21', 'Y21':
            assert label in anc_basis.labels
Exemple #17
0
    def test_chain_merge_prev(self, d, lib):
        b = bases.general(d)

        rng = np.random.RandomState(4242)
        dm = rng.randn(d*d, d*d) + 1j * rng.randn(d*d, d*d)
        dm += dm.conjugate().transpose()
        dm /= dm.trace()

        chain = Operation.from_sequence(
            (lib.cphase(angle=np.pi/7, leakage=0.25)
             if d == 3 else lib.cphase(3*np.pi / 7)).at(0, 1),
            lib.rotate_x(4 * np.pi / 7).at(0),
        )

        bases_full = (b, b)
        chain_c = chain.compile(bases_full, bases_full)
        assert len(chain.operations) == 2
        assert isinstance(chain_c, _PTMOperation)

        state1 = State.from_dm(dm, bases_full)
        state2 = State.from_dm(dm, bases_full)
        chain(state1, 0, 1)
        chain_c(state2, 0, 1)

        assert np.allclose(state1.meas_prob(0), state2.meas_prob(0))
        assert np.allclose(state1.meas_prob(1), state2.meas_prob(1))
Exemple #18
0
def test_create_untimed_model():
    basis = (bases.general(2), )

    class SampleModel(Model):
        dim = 2

        @Model.gate()
        def rotate_y(self, qubit):
            return (ParametrizedOperation(lib.rotate_y, basis), )

        @Model.gate()
        def cphase(self, qubit_static, qubit_fluxed):
            return (lib.cphase(pi).at(qubit_static, qubit_fluxed), )

    sample_setup = Setup("""
    setup: []
    """)

    m = SampleModel(sample_setup)
    cnot = m.rotate_y('D0', angle=0.5*pi) + m.cphase('D0', 'D1') + \
           m.rotate_y('D0', angle=-0.5*pi)

    assert cnot.finalize().operation.ptm(basis * 2, basis * 2) == approx(
        Operation.from_sequence(
            lib.rotate_y(0.5 * pi).at(0),
            lib.cphase(pi).at(0, 1),
            lib.rotate_y(-0.5 * pi).at(0),
        ).ptm(basis * 2, basis * 2))
Exemple #19
0
def idle(duration, t1, t2, anharmonicity=0.):
    if np.isfinite(t1) and np.isfinite(t2):
        t_phi = 1. / (1. / t2 - 0.5 / t1)
        if t_phi < 0:
            raise ValueError('t2 must be less than 2*t1')
        elif np.allclose(t_phi, 0):
            ops_t2 = []
        else:
            ops_t2 = [(8. / (9 * t_phi))**0.5 *
                      np.array([[1, 0, 0], [0, 0, 0], [0, 0, -1]]),
                      (2. / (9 * t_phi))**0.5 *
                      np.array([[1, 0, 0], [0, -1, 0], [0, 0, 0]]),
                      (2. / (9 * t_phi))**0.5 *
                      np.array([[0, 0, 0], [0, 1, 0], [0, 0, -1]])]
    else:
        ops_t2 = []

    op_t1 = t1**-0.5 * np.array([[0, 1, 0], [0, 0, np.sqrt(2)], [0, 0, 0]])
    if not np.allclose(anharmonicity, 0.):
        ham = np.array([
            [0., 0., 0.],
            [0., 0., 0.],
            [0., 0., anharmonicity],
        ])
    else:
        ham = None
    return Operation.from_lindblad_form(duration, (bases.general(3), ),
                                        hamiltonian=ham,
                                        lindblad_ops=[op_t1, *ops_t2])
    def test_chain_merge_prev(self, d, lib):
        b = bases.general(d)

        rng = np.random.RandomState(4242)
        dm = rng.randn(d * d, d * d) + 1j * rng.randn(d * d, d * d)
        dm += dm.conjugate().transpose()
        dm /= dm.trace()

        chain = Operation.from_sequence(
            (lib.cphase(angle=np.pi / 7, leakage_rate=0.25)
             if d == 3 else lib.cphase(3 * np.pi / 7)).at(0, 1),
            lib.rotate_x(4 * np.pi / 7).at(0),
        )

        bases_full = (b, b)
        chain_c = chain.compile(bases_full, bases_full)
        assert len(chain._units) == 2
        assert isinstance(chain_c, PTMOperation)

        pv1 = PauliVector.from_dm(dm, bases_full)
        pv2 = PauliVector.from_dm(dm, bases_full)
        chain(pv1, 0, 1)
        chain_c(pv2, 0, 1)

        assert np.allclose(pv1.meas_prob(0), pv2.meas_prob(0))
        assert np.allclose(pv1.meas_prob(1), pv2.meas_prob(1))
Exemple #21
0
def depolarization(rate):
    rate = rate / 2
    sqrt = np.sqrt(rate)
    matrix = np.array([
        np.sqrt(2 - (3 * rate)) * _PAULI["I"], sqrt * _PAULI["X"],
        sqrt * _PAULI["Y"], sqrt * _PAULI["Z"]
    ])
    return Operation.from_kraus(matrix, 2)
Exemple #22
0
def depolarization(rate):
    rate = rate / 2
    sqrt = np.sqrt(rate)
    matrix = np.array([np.sqrt(2 - (3 * rate)) * _PAULI["I"],
                       sqrt * _PAULI["X"],
                       sqrt * _PAULI["Y"],
                       sqrt * _PAULI["Z"]])
    return Operation.from_kraus(matrix, 2)
Exemple #23
0
def amp_damping(total_rate=None, *, exc_rate=None, damp_rate=None):
    if total_rate is not None:
        kraus = np.array([[[1, 0], [0, np.sqrt(1 - total_rate)]],
                          [[0, np.sqrt(total_rate)], [0, 0]]])
        return Operation.from_kraus(kraus, 2)
    else:
        if None in (exc_rate, damp_rate):
            raise ValueError(
                "Either the total_rate or both the exc_rate and damp_rate "
                "must be provided")
        comb_rate = exc_rate + damp_rate
        ptm = np.array([
            [1, 0, 0, 0],
            [0, np.sqrt((1 - comb_rate)), 0, 0],
            [0, 0, np.sqrt((1 - comb_rate)), 0],
            [2*damp_rate - comb_rate, 0, 0, 1 - comb_rate]])
        return Operation.from_ptm(ptm, (bases.gell_mann(2),))
Exemple #24
0
def cnot():
    dcnot = np.zeros((9, 9))
    dcnot[3, 3] = 0.5
    dcnot[4, 4] = 0.5
    dcnot[3, 4] = -0.5
    dcnot[4, 3] = -0.5
    unitary = expm(-1j*np.pi*dcnot)
    return Operation.from_kraus(unitary, 3)
    def test_circuits_params(self):
        dim = 2
        basis = (bases.general(dim), ) * 2
        orotate = lib.rotate_y
        ocphase = lib.cphase
        grotate = Gate('Q0', dim, ParametrizedOperation(orotate, basis[:1]))
        gcphase = Gate(('Q0', 'Q1'), dim,
                       ParametrizedOperation(ocphase, basis))

        with pytest.raises(RuntimeError,
                           match=r".*free parameters.*\n"
                           r".*angle.*\n"
                           r".*allow_param_repeat.*"):
            _ = gcphase + grotate

        with allow_param_repeat():
            circuit = grotate + gcphase + grotate

        assert circuit.free_parameters == {sympy.symbols('angle')}
        assert len(circuit.gates) == 3
        angle = 0.736
        assert c_op(circuit(angle=angle)).ptm(basis, basis) == \
               approx(Operation.from_sequence(
                   orotate(angle).at(0), ocphase(angle).at(0, 1),
                   orotate(angle).at(0)
               ).ptm(basis, basis))

        angle1 = 0.4 * pi
        angle2 = 1.01 * pi
        angle3 = -0.6 * pi
        ptm_ref = Operation.from_sequence(
            orotate(angle1).at(0),
            ocphase(angle2).at(0, 1),
            orotate(angle3).at(0)).ptm(basis, basis)

        circuit = grotate(angle=angle1) + gcphase(angle=angle2) + \
                  grotate(angle=angle3)
        assert circuit.finalize().operation.ptm(basis, basis) == \
               approx(ptm_ref)

        circuit = grotate(angle='angle1') + gcphase(angle='angle2') + \
                  grotate(angle='angle3')
        assert c_op(circuit(angle1=angle1, angle2=angle2,
                            angle3=angle3)).ptm(basis,
                                                basis) == approx(ptm_ref)
Exemple #26
0
def controlled_unitary(unitary):
    dim_hilbert = unitary.shape[0]
    if unitary.shape != (dim_hilbert, dim_hilbert):
        raise ValueError("Unitary matrix must be square")
    control_block = np.eye(2)
    off_diag_block_0 = np.zeros((2, dim_hilbert))
    off_diag_block_1 = np.zeros((dim_hilbert, 2))
    matrix = np.array([[control_block, off_diag_block_0],
                       [off_diag_block_1, unitary]])
    return Operation.from_kraus(matrix, 2)
Exemple #27
0
def hadamard():
    """A perfect Hadamard operation.

    Returns
    -------
    Operation.from_kraus
        An operation, that corresponds to the rotation.
    """
    matrix = np.sqrt(0.5) * np.array([[1, 1], [1, -1]])
    return Operation.from_kraus(matrix, 2)
Exemple #28
0
def hadamard():
    """A perfect Hadamard operation.

    Returns
    -------
    Operation.from_kraus
        An operation, that corresponds to the rotation.
    """
    matrix = np.sqrt(0.5)*np.array([[1, 1], [1, -1]])
    return Operation.from_kraus(matrix, 2)
Exemple #29
0
def controlled_unitary(unitary):
    dim_hilbert = unitary.shape[0]
    if unitary.shape != (dim_hilbert, dim_hilbert):
        raise ValueError("Unitary matrix must be square")
    control_block = np.eye(2)
    off_diag_block_0 = np.zeros((2, dim_hilbert))
    off_diag_block_1 = np.zeros((dim_hilbert, 2))
    matrix = np.array([[control_block, off_diag_block_0],
                       [off_diag_block_1, unitary]])
    return Operation.from_kraus(matrix, 2)
    def test_chain_compile_single_qubit(self, d, lib):
        b = bases.general(d)
        dm = random_hermitian_matrix(d, seed=487)

        bases_full = (b, )
        subbases = (b.subbasis([0, 1]), )
        angle = np.pi / 5
        rx_angle = lib.rotate_x(angle)
        rx_2angle = lib.rotate_x(2 * angle)
        chain0 = Operation.from_sequence(rx_angle.at(0), rx_angle.at(0))
        pv0 = PauliVector.from_dm(dm, bases_full)
        chain0(pv0, 0)
        assert chain0.num_qubits == 1
        assert len(chain0._units) == 2

        chain0_c = chain0.compile(bases_full, bases_full)
        assert isinstance(chain0_c, PTMOperation)
        pv1 = PauliVector.from_dm(dm, bases_full)
        chain0_c(pv1, 0)
        assert chain0_c.num_qubits == 1
        assert isinstance(chain0_c, PTMOperation)
        op_angle = chain0_c
        op_2angle = rx_2angle.compile(bases_full, bases_full)
        assert isinstance(op_2angle, PTMOperation)
        assert op_angle.shape == op_2angle.shape
        assert op_angle.bases_in == op_2angle.bases_in
        assert op_angle.bases_out == op_2angle.bases_out
        assert op_angle.ptm(op_angle.bases_in, op_angle.bases_out) == \
            approx(op_2angle.ptm(op_2angle.bases_in, op_2angle.bases_out))
        assert pv1.to_pv() == approx(pv0.to_pv())

        rx_pi = lib.rotate_x(np.pi)
        chain_2pi = Operation.from_sequence(rx_pi.at(0), rx_pi.at(0))
        chain_2pi_c1 = chain_2pi.compile(subbases, bases_full)
        assert isinstance(chain_2pi_c1, PTMOperation)
        assert chain_2pi_c1.bases_in == subbases
        assert chain_2pi_c1.bases_out == subbases

        chain_2pi_c2 = chain_2pi.compile(bases_full, subbases)
        assert isinstance(chain_2pi_c2, PTMOperation)
        assert chain_2pi_c2.bases_in == subbases
        assert chain_2pi_c2.bases_out == subbases
Exemple #31
0
def hadamard():
    """A perfect Hadamard operation.

    Returns
    -------
    Operation
        An operation, that corresponds to the rotation.
    """
    s = np.sqrt(0.5)
    matrix = np.array([[s, s, 0], [s, -s, 0], [0, 0, 1]])
    return Operation.from_kraus(matrix, 3)
    def test_ptm(self):
        # Some random gate sequence
        op_indices = [(lib2.rotate_x(np.pi / 2), (0, )),
                      (lib2.rotate_y(0.3333), (1, )), (lib2.cphase(), (0, 2)),
                      (lib2.cphase(), (1, 2)),
                      (lib2.rotate_x(-np.pi / 2), (0, ))]
        circuit = Operation.from_sequence(*(op.at(*ix)
                                            for op, ix in op_indices))

        b = (bases.general(2), ) * 3
        ptm = circuit.ptm(b, b)
        assert isinstance(ptm, np.ndarray)

        op_3q = Operation.from_ptm(ptm, b)
        dm = random_hermitian_matrix(8, seed=93)
        state1 = PauliVector.from_dm(dm, b)
        state2 = PauliVector.from_dm(dm, b)

        circuit(state1, 0, 1, 2)
        op_3q(state2, 0, 1, 2)
        assert np.allclose(state1.to_pv(), state2.to_pv())
    def test_convert_ptm_basis(self):
        p_damp = 0.5
        damp_kraus_mat = np.array([[[1, 0], [0, np.sqrt(1 - p_damp)]],
                                   [[0, np.sqrt(p_damp)], [0, 0]]])
        gell_mann_basis = (bases.gell_mann(2), )
        general_basis = (bases.general(2), )

        op1 = Operation.from_kraus(damp_kraus_mat, gell_mann_basis)
        op2 = op1.set_bases(general_basis, general_basis) \
            .set_bases(gell_mann_basis, gell_mann_basis)
        assert np.allclose(op1.ptm(gell_mann_basis), op2.ptm(gell_mann_basis))
        assert op1.bases_in == op2.bases_in
        assert op1.bases_out == op2.bases_out
    def test_circuits_add(self):
        dim = 2
        orplus = lib.rotate_y(0.5 * pi)
        ocphase = lib.cphase(pi)
        orminus = lib.rotate_y(-0.5 * pi)
        grplus = Gate('Q0', dim, orplus)
        gcphase = Gate(('Q0', 'Q1'), dim, ocphase)
        grminus = Gate('Q0', dim, orminus)
        basis = (bases.general(2), ) * 2

        circuit = grplus + gcphase
        assert circuit.qubits == ['Q0', 'Q1']
        assert len(circuit.gates) == 2
        assert c_op(circuit).ptm(basis, basis) == approx(
            Operation.from_sequence(orplus.at(0),
                                    ocphase.at(0, 1)).ptm(basis, basis))

        circuit = circuit + grminus
        assert circuit.qubits == ['Q0', 'Q1']
        assert len(circuit.gates) == 3
        assert c_op(circuit).ptm(basis, basis) == approx(
            Operation.from_sequence(orplus.at(0), ocphase.at(0, 1),
                                    orminus.at(0)).ptm(basis, basis))

        circuit = grplus + (gcphase + grminus)
        assert circuit.qubits == ['Q0', 'Q1']
        assert len(circuit.gates) == 3
        assert c_op(circuit).ptm(basis, basis) == approx(
            Operation.from_sequence(orplus.at(0), ocphase.at(0, 1),
                                    orminus.at(0)).ptm(basis, basis))

        grplus = Gate('Q1', dim, orplus)
        grminus = Gate('Q1', dim, orminus)
        circuit = grplus + gcphase + grminus
        assert circuit.qubits == ['Q1', 'Q0']
        assert len(circuit.gates) == 3
        assert c_op(circuit).ptm(basis, basis) == approx(
            Operation.from_sequence(orplus.at(0), ocphase.at(0, 1),
                                    orminus.at(0)).ptm(basis, basis))

        basis = (basis[0], ) * 3

        grplus = Gate('Q2', dim, orplus)
        grminus = Gate('Q0', dim, orminus)
        circuit = grplus + gcphase + grminus
        assert circuit.qubits == ['Q2', 'Q0', 'Q1']
        assert len(circuit.gates) == 3
        assert c_op(circuit).ptm(basis, basis) == approx(
            Operation.from_sequence(orplus.at(0), ocphase.at(1, 2),
                                    orminus.at(1)).ptm(basis, basis))

        grplus = Gate('Q0', dim, orplus)
        grminus = Gate('Q2', dim, orminus)
        circuit = grplus + gcphase + grminus
        assert circuit.qubits == ['Q0', 'Q1', 'Q2']
        assert len(circuit.gates) == 3
        assert c_op(circuit).ptm(basis, basis) == approx(
            Operation.from_sequence(orplus.at(0), ocphase.at(0, 1),
                                    orminus.at(2)).ptm(basis, basis))
Exemple #35
0
    def test_chain_compile_single_qubit(self, d, lib):
        b = bases.general(d)
        dm = random_density_matrix(d, seed=487)

        bases_full = (b,)
        subbases = (b.subbasis([0, 1]),)
        angle = np.pi/5
        rx_angle = lib.rotate_x(angle)
        rx_2angle = lib.rotate_x(2*angle)
        chain0 = Operation.from_sequence(rx_angle.at(0), rx_angle.at(0))
        state0 = State.from_dm(dm, bases_full)
        chain0(state0, 0)
        assert chain0.num_qubits == 1
        assert len(chain0.operations) == 2

        chain0_c = chain0.compile(bases_full, bases_full)
        state1 = State.from_dm(dm, bases_full)
        chain0_c(state1, 0)
        assert chain0_c.num_qubits == 1
        assert isinstance(chain0_c, _PTMOperation)
        op_angle = chain0_c
        op_2angle = rx_2angle.compile(bases_full, bases_full)
        assert op_angle.shape == op_2angle.shape
        assert op_angle.bases_in == op_2angle.bases_in
        assert op_angle.bases_out == op_2angle.bases_out
        assert op_angle.ptm == approx(op_2angle.ptm)
        assert state1.to_pv() == approx(state0.to_pv())

        rx_pi = lib.rotate_x(np.pi)
        chain_2pi = Operation.from_sequence(rx_pi.at(0), rx_pi.at(0))
        chain_2pi_c1 = chain_2pi.compile(subbases, bases_full)
        assert isinstance(chain_2pi_c1, _PTMOperation)
        assert chain_2pi_c1.bases_in == subbases
        assert chain_2pi_c1.bases_out == subbases

        chain_2pi_c2 = chain_2pi.compile(bases_full, subbases)
        assert isinstance(chain_2pi_c2, _PTMOperation)
        assert chain_2pi_c2.bases_in == subbases
        assert chain_2pi_c2.bases_out == subbases
    def test_kraus_to_ptm_qutrits(self):
        cz_kraus_mat = np.diag([1, 1, 1, 1, -1, 1, -1, 1, 1])
        qutrit_basis = (bases.gell_mann(3), )
        system_bases = qutrit_basis * 2

        cz = Operation.from_kraus(cz_kraus_mat, system_bases)
        cz_ptm = cz.ptm(system_bases)

        assert cz_ptm.shape == (9, 9, 9, 9)
        cz_ptm_flat = cz_ptm.reshape((81, 81))
        assert np.all(cz_ptm_flat.round(3) <= 1) and np.all(
            cz_ptm.round(3) >= -1)
        assert np.isclose(np.sum(cz_ptm_flat[0, :]), 1)
        assert np.isclose(np.sum(cz_ptm_flat[:, 0]), 1)
Exemple #37
0
    def test_kraus_to_ptm_qutrits(self):
        cz_kraus_mat = np.diag([1, 1, 1, 1, -1, 1, -1, 1, 1])
        qutrit_basis = (bases.gell_mann(3),)
        system_bases = qutrit_basis * 2

        cz = Operation.from_kraus(cz_kraus_mat, 3).set_bases(system_bases,
                                                             system_bases)

        assert cz.ptm.shape == (9, 9, 9, 9)
        cz_ptm_flat = cz.ptm.reshape((81, 81))
        assert np.all(cz_ptm_flat.round(3) <= 1) and np.all(
            cz.ptm.round(3) >= -1)
        assert np.isclose(np.sum(cz_ptm_flat[0, :]), 1)
        assert np.isclose(np.sum(cz_ptm_flat[:, 0]), 1)
Exemple #38
0
def cphase(angle=np.pi):
    """A perfect controlled phase rotation.

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.

    Returns
    -------
    Operation.from_kraus
        An operation, that corresponds to the rotation.
    """
    matrix = np.diag([1, 1, 1, np.exp(1j * angle)])
    return Operation.from_kraus(matrix, 2)
Exemple #39
0
    def test_convert_ptm_basis(self):
        p_damp = 0.5
        damp_kraus_mat = np.array(
            [[[1, 0], [0, np.sqrt(1-p_damp)]],
             [[0, np.sqrt(p_damp)], [0, 0]]])
        gell_mann_basis = (bases.gell_mann(2),)
        general_basis = (bases.general(2),)

        damp_op_kraus = Operation.from_kraus(damp_kraus_mat, 2)
        op1 = damp_op_kraus.set_bases(gell_mann_basis, gell_mann_basis)
        op2 = damp_op_kraus.set_bases(general_basis, general_basis) \
            .set_bases(gell_mann_basis, gell_mann_basis)
        assert np.allclose(op1.ptm, op2.ptm)
        assert op1.bases_in == op2.bases_in
        assert op1.bases_out == op2.bases_out
Exemple #40
0
def cphase(angle=np.pi):
    """A perfect controlled phase rotation.

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.

    Returns
    -------
    Operation.from_kraus
        An operation, that corresponds to the rotation.
    """
    matrix = np.diag([1, 1, 1, np.exp(1j * angle)])
    return Operation.from_kraus(matrix, 2)
Exemple #41
0
def rotate_y(angle=np.pi):
    """A perfect single qubit rotation around :math:`Oy` axis.

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.

    Returns
    -------
    Operation
        An operation, that corresponds to the rotation.
    """
    sin, cos = np.sin(angle / 2), np.cos(angle / 2)
    matrix = np.array([[cos, -sin, 0], [sin, cos, 0], [0, 0, 1]])
    return Operation.from_kraus(matrix, 3)
Exemple #42
0
def rotate_y(angle=np.pi):
    """A perfect single qubit rotation around :math:`Oy` axis.

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.

    Returns
    -------
    Operation.from_kraus
        An operation, that corresponds to the rotation.
    """
    sin, cos = np.sin(angle / 2), np.cos(angle / 2)
    matrix = np.array([[cos, -sin], [sin, cos]])
    return Operation.from_kraus(matrix, 2)
Exemple #43
0
def rotate_z(angle=np.pi):
    """A perfect single qubit rotation around :math:`Oz` axis.

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.

    Returns
    -------
    Operation.from_kraus
        An operation, that corresponds to the rotation.
    """
    exp = np.exp(-1j * angle / 2)
    matrix = np.diag([exp, exp.conj()])
    return Operation.from_kraus(matrix, 2)
Exemple #44
0
def rotate_z(angle=np.pi):
    """A perfect single qubit rotation around :math:`Oz` axis.

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.

    Returns
    -------
    Operation
        An operation, that corresponds to the rotation.
    """
    exp = np.exp(-1j * angle / 2)
    matrix = np.diag([exp, exp.conj(), 1])
    return Operation.from_kraus(matrix, 3)
Exemple #45
0
def iswap(angle=np.pi/2):
    """A perfect controlled phase rotation.

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.

    Returns
    -------
    Operation.from_kraus
        An operation, that corresponds to the rotation.
    """
    sin, cos = np.sin(angle), np.cos(angle)
    matrix = np.array([[1, 0, 0, 0],
                       [0, cos, 1j*sin, 0],
                       [0, 1j*sin, cos, 0],
                       [0, 0, 0, 1]])
    return Operation.from_kraus(matrix, 2)
Exemple #46
0
    def test_zz_parity_compilation(self):
        b_full = bases.general(3)
        b0 = b_full.subbasis([0])
        b01 = b_full.subbasis([0, 1])
        b012 = b_full.subbasis([0, 1, 2])

        bases_in = (b01, b01, b0)
        bases_out = (b_full, b_full, b012)
        zz = Operation.from_sequence(
            lib3.rotate_x(-np.pi/2).at(2),
            lib3.cphase(leakage=0.1).at(0, 2),
            lib3.cphase(leakage=0.25).at(2, 1),
            lib3.rotate_x(np.pi/2).at(2),
            lib3.rotate_x(np.pi).at(0),
            lib3.rotate_x(np.pi).at(1)
        )
        zzc = zz.compile(bases_in=bases_in, bases_out=bases_out)

        assert len(zzc.operations) == 2
        op1, ix1 = zzc.operations[0]
        op2, ix2 = zzc.operations[1]
        assert ix1 == (0, 2)
        assert ix2 == (1, 2)
        assert op1.bases_in[0] == bases_in[0]
        assert op2.bases_in[0] == bases_in[1]
        assert op1.bases_in[1] == bases_in[2]
        # Qubit 0 did not leak
        assert op1.bases_out[0] == bases_out[0].subbasis([0, 1, 3, 4])
        # Qubit 1 leaked
        assert op2.bases_out[0] == bases_out[1].subbasis([0, 1, 2, 6])
        # Qubit 2 is measured
        assert op2.bases_out[1] == bases_out[2]

        dm = random_density_matrix(3**3, seed=85)
        state1 = State.from_dm(dm, (b01, b01, b0))
        state2 = State.from_dm(dm, (b01, b01, b0))

        zz(state1, 0, 1, 2)
        zzc(state2, 0, 1, 2)

        # Compiled version still needs to be projected, so we can't compare
        # Pauli vectors, so we can to check only DM diagonals.
        assert np.allclose(state1.diagonal(), state2.diagonal())
Exemple #47
0
    def test_chain_compile_three_qubit(self, d, lib):
        b = bases.general(d)
        b0 = b.subbasis([0])

        chain0 = Operation.from_sequence(
            lib.rotate_x(0.5*np.pi).at(2),
            lib.cphase().at(0, 2),
            lib.cphase().at(1, 2),
            lib.rotate_x(-0.75*np.pi).at(2),
            lib.rotate_x(0.25*np.pi).at(2),
        )
        chain1 = chain0.compile((b, b, b0), (b, b, b))
        assert chain1.operations[0].indices == (0, 2)
        assert chain1.operations[0].operation.bases_in == (b, b0)
        assert chain1.operations[0].operation.bases_out[0] == b
        assert chain1.operations[1].indices == (1, 2)
        assert chain1.operations[1].operation.bases_in[0] == b
        assert chain1.operations[1].operation.bases_out[0] == b
        for label in '0', '1', 'X10', 'Y10':
            assert label in chain1.operations[1].operation.bases_out[1].labels
Exemple #48
0
    def test_chain_apply(self):
        b = (bases.general(2),) * 3
        dm = random_density_matrix(8, seed=93)
        state1 = State.from_dm(dm, b)
        state2 = State.from_dm(dm, b)

        # Some random gate sequence
        op_indices = [(lib2.rotate_x(np.pi/2), (0,)),
                      (lib2.rotate_y(0.3333), (1,)),
                      (lib2.cphase(), (0, 2)),
                      (lib2.cphase(), (1, 2)),
                      (lib2.rotate_x(-np.pi/2), (0,))]

        for op, indices in op_indices:
            op(state1, *indices),

        circuit = Operation.from_sequence(
            *(op.at(*ix) for op, ix in op_indices))
        circuit(state2, 0, 1, 2)

        assert np.all(state1.to_pv() == state2.to_pv())
Exemple #49
0
def cphase(angle=np.pi, leakage=0.):
    """A perfect controlled phase rotation.
    First qubit is low-frequency, second qubit is high-frequency (it leaks).

    Parameters
    ----------
    angle: float, optional
        Rotation angle in radians. Default is :math:`\\pi`.
    leakage: float, optional
        Leakage rate of a CPhase gate

    Returns
    -------
    Operation
        An operation, that corresponds to the rotation.
    """
    dcphase = np.zeros((9, 9))
    dcphase[2, 4] = 1
    dcphase[4, 2] = 1
    angle_frac = 1 - np.arcsin(np.sqrt(leakage)) / np.pi
    unitary = expm(-1j*angle*angle_frac*dcphase)
    return Operation.from_kraus(unitary, 3)
Exemple #50
0
    def test_chain_compile_leaking(self):
        b = bases.general(3)
        chain0 = Operation.from_sequence(
            lib3.rotate_x(0.5*np.pi).at(2),
            lib3.cphase(leakage=0.1).at(0, 2),
            lib3.cphase(leakage=0.1).at(1, 2),
            lib3.rotate_x(-0.75*np.pi).at(2),
            lib3.rotate_x(0.25*np.pi).at(2),
        )
        b0 = b.subbasis([0])
        b01 = b.subbasis([0, 1])
        b0134 = b.subbasis([0, 1, 3, 4])
        chain1 = chain0.compile((b0, b0, b0134), (b, b, b))
        # Ancilla is not leaking here
        anc_basis = chain1.operations[1].operation.bases_out[1]
        for label in anc_basis.labels:
            assert '2' not in label

        chain2 = chain0.compile((b01, b01, b0134), (b, b, b))
        # Ancilla is leaking here
        anc_basis = chain2.operations[1].operation.bases_out[1]
        for label in '2', 'X20', 'Y20', 'X21', 'Y21':
            assert label in anc_basis.labels
Exemple #51
0
    def test_chain_merge_next(self, d, lib):
        b = bases.general(d)

        dm = random_density_matrix(d**2, seed=574)

        chain = Operation.from_sequence(
            lib.rotate_x(np.pi / 5).at(0),
            (lib.cphase(angle=3*np.pi/7, leakage=0.1)
             if d == 3 else lib.cphase(3*np.pi / 7)).at(0, 1),
        )

        bases_full = (b, b)
        chain_c = chain.compile(bases_full, bases_full)
        assert len(chain.operations) == 2
        assert isinstance(chain_c, _PTMOperation)

        state1 = State.from_dm(dm, bases_full)
        state2 = State.from_dm(dm, bases_full)
        chain(state1, 0, 1)
        chain_c(state2, 0, 1)

        assert state1.meas_prob(0) == approx(state2.meas_prob(0))
        assert state1.meas_prob(1) == approx(state2.meas_prob(1))
Exemple #52
0
def idle(duration, t1, t2, anharmonicity=0.):
    t_phi = 1./(1./t2 - 0.5/t1)
    op_t1 = t1**-0.5 * np.array([
        [0, 1, 0],
        [0, 0, np.sqrt(2)],
        [0, 0, 0]
    ])
    ops_t2 = [
        (8. / (9*t_phi))**0.5 * np.array([
            [1, 0, 0],
            [0, 0, 0],
            [0, 0, -1]
        ]),
        (2. / (9*t_phi))**0.5 * np.array([
            [1, 0, 0],
            [0, -1, 0],
            [0, 0, 0]
        ]),
        (2. / (9*t_phi))**0.5 * np.array([
            [0, 0, 0],
            [0, 1, 0],
            [0, 0, -1]
        ])
    ]
    if not np.allclose(anharmonicity, 0.):
        ham = np.array([
            [0., 0., 0.],
            [0., 0., 0.],
            [0., 0., anharmonicity],
        ])
    else:
        ham = None
    return Operation.from_lindblad_form(
        duration, bases.general(3),
        hamiltonian=ham,
        lindblad_ops=[op_t1, *ops_t2])
Exemple #53
0
def amp_phase_damping(damp_rate, deph_rate):
    amp_damp = amp_damping(damp_rate)
    phase_damp = phase_damping(deph_rate)
    return Operation.from_sequence(amp_damp.at(0), phase_damp.at(0))
Exemple #54
0
def phase_shift(angle=np.pi):
    matrix = np.diag([1, np.exp(1j * angle)])
    return Operation.from_kraus(matrix, 2)
Exemple #55
0
def cnot():
    matrix = np.array([[1, 0, 0, 0],
                       [0, 1, 0, 0],
                       [0, 0, 0, 1],
                       [0, 0, 1, 0]])
    return Operation.from_kraus(matrix, 2)
Exemple #56
0
def bit_phase_flipping(flip_rate):
    matrix = np.array([np.sqrt(flip_rate) * _PAULI["I"],
                       np.sqrt(1 - flip_rate) * _PAULI["Y"]])
    return Operation.from_kraus(matrix, 2)
Exemple #57
0
def phase_flipping(flip_rate):
    # This is actually equivalent to the phase damping
    matrix = np.array([np.sqrt(flip_rate) * _PAULI["I"],
                       np.sqrt(1 - flip_rate) * _PAULI["Z"]])
    return Operation.from_kraus(matrix, 2)