def getSigPred(X, w_mean, wrot, dt): Y = np.zeros(X.shape) for i, xi in enumerate(X.transpose()): qt = expq(np.hstack((0, wrot * dt / 2))) qi = multq(xi, qt) Y[:, i] = qi xmean, Evi = avgq(Y.transpose(), w_mean, x) Pm = 2 * np.dot(Evi[:, 0], Evi[:, 0].transpose()) + np.dot( Evi[:, 1:], Evi[:, 1:].transpose()) / (2 * n) return Y, xmean, Evi, Pm
def getSigmaPoints(P, Q, x, n): X = np.zeros([x.shape[0], 2 * n + 1]) S = np.linalg.cholesky(P + Q) W = np.sqrt(n) * S W = np.hstack((W, -W)) X[:, 0] = x for i, w in enumerate(W.transpose()): qW = expq(np.hstack((0, w / 2))) Xi = multq(x, qW) X[:, i + 1] = Xi return X
def updateX(Z, zacc, nu, Evi, Pm, R): Pzz = 2 * np.dot((Z - zacc)[:, 0], (Z - zacc)[:, 0].transpose()) + np.dot( (Z - zacc)[:, 1:], (Z - zacc)[:, 1:].transpose()) / (2 * n) Pvv = Pzz + R Pxz = 2 * np.dot(Evi[:, 0], (Z - zacc)[:, 0].transpose()) + np.dot( Evi[:, 1:], (Z - zacc)[:, 1:].transpose()) / (2 * n) K = np.dot(Pxz, np.linalg.inv(Pvv)) P = Pm - np.dot(np.dot(K, Pvv), K.transpose()) V = np.hstack((0, np.dot(K, np.reshape(nu, [ 3, ])) / 2)) x = multq(xmean, expq(V)) return K, P, x
w = data[3:][:] w = np.vstack((w[1, :], w[2, :], w[0, :])) sen_a = 300 sen_w = 3.33 * 180 / np.pi sf_a = 3300 / (1023 * sen_a) sf_w = 3300 / (1023 * sen_w) bias_a = np.mean(acc[:, :250], 1) bias_w = np.mean(w[:, :250], 1) acc = (acc - np.reshape(bias_a, [3, 1])) * sf_a + np.reshape( np.array([0, 0, 1]), [3, 1]) wrot = (w - np.reshape(bias_w, [3, 1])) * sf_w q = np.array([1, 0, 0, 0]) qt = q td = np.diff(ts) eul = q[1:] for t in range(0, np.shape(wrot)[1] - 1): qt = multq(qt, expq(np.hstack((0, wrot[:, t] / 2 * td[0, t])))) qt = qt / np.linalg.norm(qt) q = np.vstack((q, qt)) eq = np.reshape(quat2euler(qt), [ 3, ]) eul = np.vstack((eul, eq))