Exemple #1
0
    def suspend_test_phase_estimation_debug(self):
        theta = 5*np.pi/16
        n_qubits = 2
        a_idx = 1
        k = 2
        circuit = QuantumCircuit(n_qubits)
        psi = QuantumState(n_qubits) # |ancilla>|logical>
        phi = 1.25/2
        print('k={}, phi={} mod (np.pi)'.format(k, phi))
        # Apply H to ancilla bit to get |+> state
        circuit.add_H_gate(a_idx)
        # Apply kickback phase rotation to ancilla bit
        circuit.add_RZ_gate(a_idx, -np.pi * phi)
        # Apply C-U(Z0)
        theta_k = 2 ** (k-1) * theta
        print('phase:{} mod (np.pi)'.format(theta_k/np.pi))
        circuit.add_RZ_gate(0, -theta_k)
        circuit.add_CNOT_gate(a_idx, 0)
        circuit.add_RZ_gate(0, theta_k)
        circuit.add_CNOT_gate(a_idx, 0)
        # Apply H to ancilla bit to get |+> state
        circuit.add_H_gate(a_idx)

        # run circuit
        circuit.update_quantum_state(psi)
        print(psi.get_vector())

        # partial trace
        p0 = psi.get_marginal_probability([2, 0])
        p1 = psi.get_marginal_probability([2, 1])
        print(p0, p1)
Exemple #2
0
 def visualize_probability(self):
     state = QuantumState(self.G.n_qubit)
     self.G.ansatz.update_quantum_state(state)
     measured_list = [
         list(map(int, list(format(x, f"0{self.G.n_qubit}b"))))
         for x in range(2**self.G.n_qubit)
     ]
     prob_list = []
     for lis in measured_list:
         prob_list.append(state.get_marginal_probability(lis))
     plt.plot(range(2**self.G.n_qubit), prob_list)
Exemple #3
0
def cost_phf_sample_oneshot(print_level, qulacs_hamiltonianZ, qulacs_s2Z,
                            qulacs_ancZ, coef0_H, coef0_S2, kappa_list):
    """Function:
    Test function for sampling Hamiltonian and S** expectation values
    with PHF just for once.

    Author(s): Takashi Tsuchimochi

    使われてない?
    """
    t1 = time.time()

    noa = Quket.noa
    nob = Quket.nob
    nva = Quket.nva
    nvb = Quket.nvb
    n_electrons = Quket.n_electrons
    n_qubit_system = n_qubits
    n_qubits = Quket.n_qubits + 1
    anc = n_qubit_system

    state = QuantumState(n_qubits)
    circuit_rhf = set_circuit_rhfZ(n_qubits, n_electrons)
    circuit_rhf.update_quantum_state(state)
    circuit_uhf = set_circuit_uhfZ(n_qubits, noa, nob, nva, nvb, kappa_list)
    circuit_uhf.update_quantum_state(state)

    ### Set post-measurement states ####
    poststate0 = state.copy()
    poststate1 = state.copy()
    circuit0 = QuantumCircuit(n_qubits)
    circuit1 = QuantumCircuit(n_qubits)
    ### Projection to anc = 0 or anc = 1 ###
    circuit0.add_gate(P0(0))
    circuit1.add_gate(P1(0))
    circuit0.update_quantum_state(poststate0)
    circuit1.update_quantum_state(poststate1)
    ### Renormalize each state ###
    norm0 = poststate0.get_squared_norm()
    norm1 = poststate1.get_squared_norm()
    poststate0.normalize(norm0)
    poststate1.normalize(norm1)

    ### grid loop ###
    Ng = 4
    beta = [-0.861136311594053, -0.339981043584856,
             0.339981043584856,  0.861136311594053]
    wg = [0.173927422568724, 0.326072577431273,
          0.326072577431273, 0.173927422568724]
    ### a list to compute the probability to observe 0 in ancilla qubit
    p0_list = np.full(n_qubits, 2)
    p0_list[-1] = 0
    ### Array for <HUg>, <S2Ug>, <Ug>
    samplelist = [5, 50, 500, 5000, 50000, 500000, 5000000]
    Ng = 4
    ncyc = 10

    prints("", filepath="./log.txt", opentype="w")
    for i_sample in samplelist:
        sampleEn = []
        sampleS2 = []

        for icyc in range(ncyc):
            prints(f"n_sample : {i_sample}  ({icyc} / {ncyc})",
                   filepath="./log.txt")

            HUg = []
            S2Ug = []
            Ug = []
            Ephf = S2 = Norm = 0
            for i in range(Ng):
                ### Copy quantum state of UHF (cannot be done in real device) ###
                state_g = QuantumState(n_qubits)
                circuit_rhf.update_quantum_state(state_g)
                circuit_uhf.update_quantum_state(state_g)
                ### Construct Ug test
                circuit_ug = QuantumCircuit(n_qubits)
                ### Hadamard on anc
                circuit_ug.add_H_gate(anc)
                controlled_Ug(circuit_ug, n_qubits, anc, np.arccos(beta[i]))
                circuit_ug.add_H_gate(anc)
                circuit_ug.update_quantum_state(state_g)

                ### Probabilities for getting 0 and 1 in ancilla qubit ###
                p0 = state_g.get_marginal_probability(p0_list)
                p1 = 1 - p0

                ### Compute expectation value <HUg> ###
                HUg.append(sample_observable(state_g,
                                             qulacs_hamiltonianZ,
                                             i_sample).real)
                ### <S2Ug> ###
                S2Ug.append(sample_observable(state_g,
                                              qulacs_s2Z,
                                              i_sample).real)
                #S2Ug.append(qulacs_s2Z.get_expectation_value(state_g))

                #Ug.append(p0 - p1)
                Ug.append(sample_observable(state_g,
                                            qulacs_ancZ,
                                            i_sample).real)
                ### Norm accumulation ###
                Norm += wg[i]*g[i]
                sampleHUg[icyc, i] = HUg[i]
                sampleS2Ug[icyc, i] = S2Ug[i]
                sampleUg[icyc, i] = Ug[i]
            #print(f"{p0=}  {p1=}  {p0-p1=}")

            sampleHUg1.append(HUg[0])
            sampleHUg2.append(HUg[1])
            sampleHUg3.append(HUg[2])
            sampleHUg4.append(HUg[3])
            sampleS2Ug1.append(S2Ug[0])
            sampleS2Ug2.append(S2Ug[1])
            sampleS2Ug3.append(S2Ug[2])
            SAMpleS2Ug4.append(S2Ug[3])
            sampleUg1.append(Ug[0])
            sampleUg2.append(Ug[1])
            sampleUg3.append(Ug[2])
            sampleUg4.append(Ug[3])

            ### Energy calculation <HP>/<P> and <S**2P>/<P> ###
            Ephf = 0
            for i in range(Ng):
                Ephf += wg[i]*HUg[i]/Norm
                S2 += wg[i]*S2Ug[i]/Norm
            #print(f" E[PHF] = {Ephf}  <S**2> = {S2}  (Nsample = {i_sample})")
            Ephf += coef0_H
            S2 += coef0_S2
            sampleEn[icyc, 0] = Ephf
            sampleS2[icyc, 0] = S2
        #print(f"(n_sample = {i_sample}): sample HUg1\n", sampleHUg1)
        #print(f"(n_sample = {i_sample}): sample HUg2\n", sampleHUg2)
        #print(f"(n_sample = {i_sample}): sample HUg3\n", sampleHUg3)
        #print(f"(n_sample = {i_sample}): sample HUg4\n", sampleHUg4)
        #print(f"(n_sample = {i_sample}): sample S2Ug1\n", sampleS2Ug1)
        #print(f"(n_sample = {i_sample}): sample S2Ug2\n", sampleS2Ug2)
        #print(f"(n_sample = {i_sample}): sample S2Ug3\n", sampleS2Ug3)
        #print(f"(n_sample = {i_sample}): sample S2Ug4\n", sampleS2Ug4)
        #print(f"(n_sample = {i_sample}): sample Ug1\n", sampleUg1)
        #print(f"(n_sample = {i_sample}): sample Ug2\n", sampleUg2)
        #print(f"(n_sample = {i_sample}): sample Ug3\n", sampleUg3)
        #print(f"(n_sample = {i_sample}): sample Ug4\n", sampleUg4)
        #print(f"(n_sample = {i_sample}): sample HUg1\n", sampleHUg1)
        #print(f"(n_sample = {i_sample}): sample HUg2\n", sampleHUg2)
        #print(f"(n_sample = {i_sample}): sample HUg3\n", sampleHUg3)
        #print(f"(n_sample = {i_sample}): sample HUg4\n", sampleHUg4)
        #print(f"(n_sample = {i_sample}): sample En\n", sampleEn)
        #print(f"(n_sample = {i_sample}): sample S2\n", sampleS2)
        with open(f"./HUg_{i_sample}.csv", "w") as fHUg:
            writer = csv.writer(fHUg)
            writer.writerows(sampleHUg)
        with open(f"./S2Ug_{i_sample}.csv", "w") as fS2Ug:
            writer = csv.writer(fS2Ug)
            writer.writerows(sampleS2Ug)
        with open(f"./Ug_{i_sample}.csv", "w") as fUg:
            writer = csv.writer(fUg)
            writer.writerows(sampleUg)
        with open(f"./En_{i_sample}.csv", "w") as fEn:
            writer = csv.writer(fEn)
            writer.writerows(sampleEn)
        with open(f"./S2_{i_sample}.csv", "w") as fS2:
            writer = csv.writer(fS2)
            writer.writerows(sampleS2)
    return Ephf, S2
Exemple #4
0
def cost_phf_sample(Quket, print_level,
                    qulacs_hamiltonian, qulacs_hamiltonianZ, qulacs_s2Z,
                    qulacs_ancZ, coef0_H, coef0_S2, ref, theta_list,
                    samplelist):
    """Function:
    Sample Hamiltonian and S**2 expectation values with PHF and PUCCSD.
    Write out the statistics in csv files.

    Author(s): Takashi Tsuchimochi
    """
    t1 = time.time()

    noa = Quket.noa
    nob = Quket.nob
    nva = Quket.nva
    nvb = Quket.nvb
    n_electrons = Quket.n_electrons
    n_qubit_system = n_qubits
    n_qubits = Quket.n_qubits + 1
    anc = n_qubit_system
    ndim1 = Quket.ndim1

    state = QuantumState(n_qubits)
    circuit_rhf = set_circuit_rhfZ(n_qubits, n_electrons)
    circuit_rhf.update_quantum_state(state)

    if ref == "phf":
        circuit_uhf = set_circuit_uhfZ(n_qubits, noa, nob, nva, nvb, theta_list)
        circuit_uhf.update_quantum_state(state)
        print("pHF")
    elif ref == "puccsd":
        circuit = set_circuit_uccsd(n_qubits, noa, nob, nva, nvb, theta_list,
                                    ndim1)
        for i in range(rho):
            circuit.update_quantum_state(state)
        print("UCCSD")

    if print_level > -1:
        print("State before projection")
        utils.print_state(state, n_qubit_system)
    #### Set post-measurement states ####
    #poststate0 = state.copy()
    #poststate1 = state.copy()
    #circuit0 = QuantumCircuit(n_qubits)
    #circuit1 = QuantumCircuit(n_qubits)
    #### Projection to anc = 0 or anc = 1 ###
    #circuit0.add_gate(P0(0))
    #circuit1.add_gate(P1(0))
    #circuit0.update_quantum_state(poststate0)
    #circuit1.update_quantum_state(poststate1)
    #### Renormalize each state ###
    #norm0 = poststate0.get_squared_norm()
    #norm1 = poststate1.get_squared_norm()
    #poststate0.normalize(norm0)
    #poststate1.normalize(norm1)

    ### grid loop ###
    Ng = 4
    beta = [-0.861136311594053, -0.339981043584856,
             0.339981043584856,  0.861136311594053]
    wg = [0.173927422568724, 0.326072577431273,
          0.326072577431273, 0.173927422568724]

    Ng = 2
    beta = [0.577350269189626, -0.577350269189626]
    wg = [0.5, 0.5]

    ### a list to compute the probability to observe 0 in ancilla qubit
    p0_list = np.full(n_qubits, 2)
    p0_list[-1] = 0

    ### Array for <HUg>, <S2Ug>, <Ug>
    # samplelist = [10,100,1000,10000,100000,1000000,10000000]
    ncyc = 4
    prints("", filepath="./log2.txt")
    for i_sample in samplelist:
        i_sample_x = i_sample
        if i_sample == 10000000:
            print("OK")
            ncyc = ncyc*10
            i_sample_x = 1000000
        sampleHUg1 = []
        sampleHUg2 = []
        sampleHUg3 = []
        sampleHUg4 = []
        sampleS2Ug1 = []
        sampleS2Ug2 = []
        sampleS2Ug3 = []
        sampleS2Ug4 = []
        sampleUg1 = []
        sampleUg2 = []
        sampleUg3 = []
        sampleUg4 = []
        # sampleEn = []
        # sampleS2 = []
        sampleHUg = np.zeros((ncyc, Ng))
        sampleS2Ug = np.zeros((ncyc, Ng))
        sampleUg = np.zeros((ncyc, Ng))
        sampleEn = np.zeros((ncyc, 1))
        sampleS2 = np.zeros((ncyc, 1))

        for icyc in range(ncyc):
            prints(f"n_sample = {i_sample_x}  ({icyc} / {ncyc})",
                   filepath="./log2.txt")
            HUg = []
            S2Ug = []
            Ug = []
            Ephf = S2 = Norm = 0
            for i in range(Ng):
                ### Copy quantum state of UHF (cannot be done in real device) ###
                state_g = QuantumState(n_qubits)
                state_g.load(state)
                ### Construct Ug test
                circuit_ug = QuantumCircuit(n_qubits)
                ### Hadamard on anc
                circuit_ug.add_H_gate(anc)
                controlled_Ug(circuit_ug, n_qubits, anc, np.arccos(beta[i]))
                circuit_ug.add_H_gate(anc)
                circuit_ug.update_quantum_state(state_g)

                ### Set post-measurement states ####
                poststate0 = state_g.copy()
                poststate1 = state_g.copy()
                circuit0 = QuantumCircuit(n_qubits)
                circuit1 = QuantumCircuit(n_qubits)
                ### Projection to anc = 0 or anc = 1 ###
                circuit0.add_gate(P0(anc))
                circuit1.add_gate(P1(anc))
                circuit0.update_quantum_state(poststate0)
                circuit1.update_quantum_state(poststate1)
                ### Renormalize each state ###
                norm0 = poststate0.get_squared_norm()
                norm1 = poststate1.get_squared_norm()
                poststate0.normalize(norm0)
                poststate1.normalize(norm1)
                ### Set ancilla qubit of poststate1 to zero (so that it won't be used) ###
                circuit_anc = QuantumCircuit(n_qubits)
                circuit_anc.add_X_gate(anc)
                circuit_anc.update_quantum_state(poststate1)
                print(
                        test_transition_observable(
                            state_g, qulacs_hamiltonianZ,
                            poststate0, poststate1, 100000))
                # exit()

                ### Probabilities for getting 0 and 1 in ancilla qubit ###
                p0 = state_g.get_marginal_probability(p0_list)
                p1 = 1 - p0

                ### Compute expectation value <HUg> ###
                HUg.append(sample_observable(state_g,
                                             qulacs_hamiltonianZ,
                                             i_sample_x).real)
                #HUg.append(adaptive_sample_observable(state_g,
                #                                      qulacs_hamiltonianZ,
                #                                      i_sample_x).real)
                ### <S2Ug> ###
                S2Ug.append(sample_observable(state_g,
                                              qulacs_s2Z,
                                              i_sample_x).real)
                #S2Ug.append(adaptive_sample_observable(state_g,
                #                                       qulacs_s2Z,
                #                                       i_sample_x).real)
                #S2Ug.append(qulacs_s2Z.get_expectation_value(state_g))
                #HUg.append(0)
                #S2Ug.append(0)

                #Ug.append(p0 - p1)
                n_term = qulacs_hamiltonianZ.get_term_count()
                n_sample_total = i_sample_x * n_term
                # in the worst-case scenario,
                # Ug is measured as many times as n_sample_total
                #(required to evaluate HUg)
                Ug.append(sample_observable(state_g,
                                            qulacs_ancZ,
                                            i_sample_x*n_term).real)
                #p0_sample = 0
                #for j_sample in range(n_sample_total):
                #   if(p0 > np.random.rand()):
                #      p0_sample += 1
                #Ug.append(2*p0_sample/n_sample_total - 1)
                ### Norm accumulation ###
                Norm += wg[i]*Ug[i]
                sampleHUg[icyc, i] = HUg[i]
                sampleS2Ug[icyc, i] = S2Ug[i]
                sampleUg[icyc, i] = Ug[i]
            #print('p0 : ',p0,'  p1 : ',p1,  '  p0 - p1 : ',p0-p1)

            sampleHUg1.append(HUg[0])
            sampleHUg2.append(HUg[1])
            #sampleHUg3.append(HUg[2])
            #sampleHUg4.append(HUg[3])
            sampleS2Ug1.append(S2Ug[0])
            sampleS2Ug2.append(S2Ug[1])
            #sampleS2Ug3.append(S2Ug[2])
            #sampleS2Ug4.append(S2Ug[3])
            sampleUg1.append(Ug[0])
            sampleUg2.append(Ug[1])
            #sampleUg3.append(Ug[2])
            #sampleUg4.append(Ug[3])

            ### Energy calculation <HP>/<P> and <S**2P>/<P> ###
            Ephf = 0
            for i in range(Ng):
                Ephf += wg[i]*HUg[i]/Norm
                S2 += wg[i]*S2Ug[i]/Norm
            # print(" <S**2> = ", S2, '\n')
            Ephf += coef0_H
            S2 += coef0_S2
            sampleEn[icyc, 0] = Ephf
            sampleS2[icyc, 0] = S2
            # print(" <E[PHF]> (Nsample = ",i_sample,") = ", Ephf)
        #print(f"(n_sample = {i_sample}):  sample HUg1\n",sampleHUg1)
        #print(f"(n_sample = {i_sample}):  sample HUg2\n",sampleHUg2)
        #print(f"(n_sample = {i_sample}):  sample HUg3\n",sampleHUg3)
        #print(f"(n_sample = {i_sample}):  sample HUg4\n",sampleHUg4)
        #print(f"(n_sample = {i_sample}):  sample S2Ug1\n",sampleS2Ug1)
        #print(f"(n_sample = {i_sample}):  sample S2Ug2\n",sampleS2Ug2)
        #print(f"(n_sample = {i_sample}):  sample S2Ug3\n",sampleS2Ug3)
        #print(f"(n_sample = {i_sample}):  sample S2Ug4\n",sampleS2Ug4)
        #print(f"(n_sample = {i_sample}):  sample Ug1\n",sampleUg1)
        #print(f"(n_sample = {i_sample}):  sample Ug2\n",sampleUg2)
        #print(f"(n_sample = {i_sample}):  sample Ug3\n",sampleUg3)
        #print(f"(n_sample = {i_sample}):  sample Ug4\n",sampleUg4)
        #print(f"(n_sample = {i_sample}):  sample HUg1\n",sampleHUg1)
        #print(f"(n_sample = {i_sample}):  sample HUg2\n",sampleHUg2)
        #print(f"(n_sample = {i_sample}):  sample HUg3\n",sampleHUg3)
        #print(f"(n_sample = {i_sample}):  sample HUg4\n",sampleHUg4)
        #print(f"(n_sample = {i_sample}):  sample En\n",sampleEn)
        #print(f"(n_sample = {i_sample}):  sample S2\n",sampleS2)
        with open(f"./Ug_{i_sample}.csv", "w") as fUg:
            writer = csv.writer(fUg)
            writer.writerows(sampleUg)
        with open(f"./HUg_{i_sample}.csv", "w") as fHUg:
            writer = csv.writer(fHUg)
            writer.writerows(sampleHUg)
        with open(f"./S2Ug_{i_sample}.csv", "w") as fS2Ug:
            writer = csv.writer(fS2Ug)
            writer.writerows(sampleS2Ug)
        with open(f"./En_{i_sample}.csv", "w") as fEn:
            writer = csv.writer(fEn)
            writer.writerows(sampleEn)
        with open(f"./S2_{i_smaple}.csv", "w") as fS2:
            writer = csv.writer(fS2)
            writer.writerows(sampleS2)
    return Ephf, S2
Exemple #5
0
ite = int(math.pow(2., num_bits * .5))

cu_gate = DenseMatrix(tuple(range(num_bits + 1)), cu_mat)
dist_gate = DenseMatrix(tuple(range(1, num_bits + 1)), dist_mat)

for t in range(ite):
    cu_gate.update_quantum_state(state)

    print("\nAfter CU Gate:")
    show_quantum_state(state)

    dist_gate.update_quantum_state(state)

    print("\nAfter Dist Gate:")
    show_quantum_state(state)

form = "{" + ":0{}b".format(num_bits) + "}"

print("\nProbabilities:")
for x in range(2**num_bits):
    testval = [int(b) for b in form.format(x)]
    testval.append(2)
    val = state.get_marginal_probability(testval[::-1])
    print((form + " {}").format(x, val))

print("\nSecret A was:")
print(("{} (" + form + ")").format(secret_a, secret_a))

del state