dyn.target = U_targ dyn.initial = U_0 dyn.drift_dyn_gen = H_d dyn.ctrl_dyn_gen = H_c # Create the TerminationConditions instance tc = termcond.TerminationConditions() tc.fid_err_targ = 1e-3 tc.min_gradient_norm = 1e-10 tc.max_iter_total = 200 tc.max_wall_time_total = 30 tc.break_on_targ = True optim = optimizer.OptimizerCrabFmin(cfg, dyn) sts = stats.Stats() dyn.stats = sts optim.stats = sts optim.config = cfg optim.dynamics = dyn optim.termination_conditions = tc guess_pgen = pulsegen.create_pulse_gen('LIN', dyn) init_amps = np.zeros([n_ts, n_ctrls]) optim.pulse_generator = [] for j in range(n_ctrls): # Note that for CRAB each control must have its own pulse generator # as the frequencies and coeffs values are stored in the pulsegen pgen = pulsegen.PulseGenCrabFourier(dyn) pgen.scaling = 0.1 # comment out the next line for no guess pulse
def test_09_load_params(self): """ control.pulseoptim: Hadamard gate (loading config from file) compare with result produced by pulseoptim method """ H_d = sigmaz() H_c = sigmax() U_0 = identity(2) U_targ = hadamard_transform(1) cfg = optimconfig.OptimConfig() cfg.param_fname = "Hadamard_params.ini" cfg.param_fpath = os.path.join(os.path.dirname(__file__), cfg.param_fname) cfg.pulse_type = "ZERO" loadparams.load_parameters(cfg.param_fpath, config=cfg) dyn = dynamics.DynamicsUnitary(cfg) dyn.target = U_targ dyn.initial = U_0 dyn.drift_dyn_gen = H_d dyn.ctrl_dyn_gen = [H_c] loadparams.load_parameters(cfg.param_fpath, dynamics=dyn) dyn.init_timeslots() n_ts = dyn.num_tslots n_ctrls = dyn.num_ctrls pgen = pulsegen.create_pulse_gen(pulse_type=cfg.pulse_type, dyn=dyn) loadparams.load_parameters(cfg.param_fpath, pulsegen=pgen) tc = termcond.TerminationConditions() loadparams.load_parameters(cfg.param_fpath, term_conds=tc) if cfg.optim_method == 'BFGS': optim = optimizer.OptimizerBFGS(cfg, dyn) elif cfg.optim_method == 'FMIN_L_BFGS_B': optim = optimizer.OptimizerLBFGSB(cfg, dyn) elif cfg.optim_method is None: raise errors.UsageError("Optimisation algorithm must be specified " "via 'optim_method' parameter") else: optim = optimizer.Optimizer(cfg, dyn) optim.method = cfg.optim_method loadparams.load_parameters(cfg.param_fpath, optim=optim) sts = stats.Stats() dyn.stats = sts optim.stats = sts optim.config = cfg optim.dynamics = dyn optim.pulse_generator = pgen optim.termination_conditions = tc init_amps = np.zeros([n_ts, n_ctrls]) for j in range(n_ctrls): init_amps[:, j] = pgen.gen_pulse() dyn.initialize_controls(init_amps) result = optim.run_optimization() result2 = cpo.optimize_pulse_unitary(H_d, list([H_c]), U_0, U_targ, 6, 6, fid_err_targ=1e-10, init_pulse_type='LIN', amp_lbound=-1.0, amp_ubound=1.0, gen_stats=True) assert_almost_equal(result.final_amps, result2.final_amps, decimal=5, err_msg="Pulses do not match")
def gen_config(param_fname='unctrlsympl_params.ini'): """ Generate the configuration for the oscillator In general values from the parameter file overwrite those hardcoded and these in turn are overwritten by cmdline args Returns ------- Optimizer """ parser = argparse.ArgumentParser( description="Command line argument parser") parser.add_argument('-p', '--param_file', type=str, default="", help="Parameters file name") parser.add_argument('-o', '--output_dir', type=str, default="", help="output sub directory") parser.add_argument('-j', '--job_id', type=int, default=0, help="Job id (from bsub)") parser.add_argument('-i', '--job_idx', type=int, default=0, help="Job index (from bsub batch array)") parser.add_argument('-I', '--idx_opt', type=str, default='', help="Job index option (what to do with it)") #parser.add_argument('-S', '--job_size', type=int, default=0, # help="Number of jobs in array") parser.add_argument('-N', '--num_qubits', type=int, default=0, help="Number of qubits") parser.add_argument('-u', '--init_amps', type=str, default=0, help="File name of initial amplitudes") parser.add_argument('-m', '--num_tslots', type=int, default=0, help="Number of timeslots") parser.add_argument('-T', '--evo_time', type=float, default=0, help="Total evolution time") parser.add_argument('--evo_time_npi', type=int, default=0, help="Total evolution time in mulitples of pi") parser.add_argument('--evo_time_npi_g0s', type=int, default=0, help="Total evolution time in mulitples of pi " "scaled by first coupling constant") parser.add_argument('-a', '--numer_acc', type=float, default=-1.0, help="Numerical accuracy") parser.add_argument('-e', '--fid_err_targ', type=float, default=0.0, help="Fidelity error target") parser.add_argument('-n', '--num_cpus', type=int, default=0, help="Fidelity error target") parser.add_argument('-M', '--mp_opt', type=str, default='', help="Multiprocessing option") parser.add_argument('--mem_opt', type=int, default=0, help="Memory optimising level") parser.add_argument('--pulse_scaling', type=int, default=0.0, help="Initial pulse scaling") parser.add_argument('--max_wall_time', type=int, default=0.0, help="Maximum simulation wall time") args = vars(parser.parse_args()) cfg = optimconfig.OptimConfig() cfg.log_level = log_level cfg.use_param_file = True if len(args['param_file']) > 0: param_fname = args['param_file'] cfg.param_fpath = os.path.join(os.getcwd(), param_fname) if not os.path.isfile(cfg.param_fpath): raise ValueError( "Commandline argument parameter " "file name '{}' does not exist.".format(param_fname)) else: print("Parameters will be read from:\n{}".format(cfg.param_fpath)) elif os.path.abspath(param_fname): cfg.param_fname = os.path.basename(param_fname) cfg.param_fpath = param_fname param_fname = cfg.param_fname else: cfg.param_fpath = os.path.join(os.getcwd(), param_fname) if (not os.path.isfile(cfg.param_fpath)): print("Default parameter file {} not present. " "Using defaults in code.").format(param_fname) cfg.use_param_file = False cfg.param_fname = param_fname # Script operational parameters cfg.job_id = 0 cfg.job_idx = 0 cfg.verbosity = 0 cfg.output_dir = None cfg.output_base_name = 'general' cfg.double_print = True cfg.output_files = True cfg.plot_result = False cfg.plot_file_type = 'PNG' cfg.save_plots = False cfg.save_results = True cfg.data_file_ext = "txt" cfg.out_file_ext = "txt" # Optimizer config cfg.optim_method = 'LBFGSB' cfg.p_type = 'RND' cfg.check_grad = False cfg.gen_stats = True cfg.stats_type = 'standard' cfg.report_stats = True cfg.save_initial_amps = False cfg.save_final_amps = False cfg.fid_type = 'pure_choi_local' cfg.amp_lbound = -np.Inf cfg.amp_ubound = np.Inf cfg.num_reps = 2 cfg.num_cpus = 1 cfg.mp_opt = "" cfg.max_mp_scens = np.inf cfg.ext_mp = False cfg.num_threads = 1 if cfg.use_param_file: # load the config parameters # note these will overide those above if present in the file print("Loading config parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, config=cfg) # override with command line params (if any) if args['num_qubits'] > 0: cfg.num_qubits = args['num_qubits'] print("Using num_qubits={} from command line".format(cfg.num_qubits)) if len(args['output_dir']) > 0: cfg.output_dir = args['output_dir'] print("Using output_dir '{}' from command line".format(cfg.output_dir)) if args['num_cpus'] > 0: cfg.num_cpus = args['num_cpus'] print("Using num_cpus={} from command line".format(cfg.num_cpus)) if len(args['mp_opt']) > 0: cfg.mp_opt = args['mp_opt'] print("Using mp_opt={} from command line".format(cfg.mp_opt)) cfg.plot_file_ext = cfg.plot_file_type.lower() if args['job_id'] > 0: cfg.job_id = args['job_id'] if cfg.job_id: print("Processing job ID: {}".format(cfg.job_id)) if args['job_idx'] > 0: cfg.job_idx = args['job_idx'] if cfg.job_idx: print("Processing job array index: {}".format(cfg.job_idx)) cfg.out_file_ext = "{}.{}.{}".format(cfg.job_id, cfg.job_idx, cfg.data_file_ext) cfg.plot_file_ext = "{}.{}.{}".format(cfg.job_id, cfg.job_idx, cfg.plot_file_type) else: cfg.out_file_ext = "{}.{}".format(cfg.job_id, cfg.data_file_ext) cfg.plot_file_ext = "{}.{}".format(cfg.job_id, cfg.plot_file_type) logger.setLevel(cfg.log_level) if not cfg.output_dir: cfg.output_dir = cfg.target_id_text dyn = dynamics.DynamicsUnitary(cfg) dyn.dense_oper = True dyn.num_tslots_list = [] dyn.st_num_tslots = 10 dyn.d_num_tslots = 5 dyn.num_num_tslots = 10 dyn.evo_time = 10.0 # For a specific list of evo_time values based on job_idx dyn.evo_time_list = [7, 10, 12, 20] # For a range of evo_time based on job_idx (idx_opt='evo_time') # Start evo_time dyn.st_evo_time = 0.2 # Evo time step size dyn.d_evo_time = 0.2 # Number of evo_time dyn.num_evo_time = 50 dyn.num_qubits = 6 dyn.target_type = 'CNOT' dyn.interact = 'Ising' dyn.topology = 'chain' dyn.ctrls_type = 'XY' dyn.coup_const = [1.0] # Used to change the order of the qubits in the Hilbert space # so that the two qubit gate will always be between 0 and 1, # but the couplings will be permuted based on hspace_order dyn.hspace_order = [] # When True the hspace_order will be automatically generated # based on the other attributes dyn.auto_hspace = False # Separation of the first and second qubits in the coupling Hilbert space # 0 implies adjacent, -1 implies random dyn.hspace_01_sep = 0 # Index of the first qubit in the coupling Hilbert space # -1 implies random dyn.hspace_0_idx = 0 # If True then same coupling constant will be used for # all interactions between qubit pairs dyn.iso_coup = True # dynamical decoup attribs # These are the decoup amplitudes in the three axes dyn.decoup_x = 0.0 dyn.decoup_y = 0.0 dyn.decoup_z = 0.0 # num_decoup_tslots = None means use the specific mask # num_decoup_tslots = 0 use all # num_decoup_tslots +ve is the number of tslots from start # num_decoup_tslots -ve is the number of zeros at the end dyn.num_decoup_tslots = 0 dyn.decoup_tslots = [] #dyn.decoup_tslot_mask = [] if cfg.use_param_file: # load the dynamics parameters # note these will overide those above if present in the file print("Loading dynamics parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, dynamics=dyn) if args['num_qubits'] > 0: dyn.num_qubits = args['num_qubits'] print("num_qubits = {} from command line".format(dyn.num_qubits)) # If job_idx is given, then use it to calculate some other parameter # (which supersedes all other settings) if cfg.job_idx and len(args['idx_opt']) > 0: cfg.ext_mp = True opt_str = args['idx_opt'].lower() if opt_str == 'evo_time': print("basing evo_time on job_idx... ") num_evo_time = len(dyn.evo_time_list) if num_evo_time > 0: print("...using evo_time_list") # get the evo time from the list T_idx = (cfg.job_idx - 1) % num_evo_time dyn.evo_time = dyn.evo_time_list[T_idx] else: print("...using start and increment") # calculate the evo_time from job_idx T_idx = (cfg.job_idx - 1) % dyn.num_evo_time dyn.evo_time = dyn.st_evo_time + dyn.d_evo_time * float(T_idx) print("evo_time={} for job idx {}".format(dyn.evo_time, cfg.job_idx)) elif opt_str == 'num_tslots': print("basing num_tslots on job_idx... ") num_nts = len(dyn.num_tslots_list) if num_nts > 0: print("...using num_tslots_list") nts_idx = (cfg.job_idx - 1) % num_nts dyn.num_tslots = dyn.num_tslots_list[nts_idx] else: print("...using start and increment") # calculate the num_tslots from job_idx nts_idx = (cfg.job_idx - 1) % dyn.num_num_tslots dyn.num_tslots = dyn.st_num_tslots + dyn.d_num_tslots * nts_idx print("num_tslots={} for job idx {}".format( dyn.num_tslots, cfg.job_idx)) else: raise ValueError("No option for idx_opt '{}' " "in command line".format(opt_str)) if args['evo_time'] > 0: dyn.evo_time = args['evo_time'] print("Using evo_time={} from command line".format(dyn.evo_time)) if args['evo_time_npi'] > 0: dyn.evo_time = np.pi * args['evo_time_npi'] print("Using evo_time={} from command line evo_time_npi".format( dyn.evo_time)) if args['evo_time_npi_g0s'] > 0: dyn.evo_time = np.pi * args['evo_time_npi_g0s'] / dyn.coup_const[0] print("Using evo_time={} from command line evo_time_npi_g0s".format( dyn.evo_time)) if args['num_tslots'] > 0: dyn.num_tslots = args['num_tslots'] print("Using num_tslots={} from command line".format(dyn.num_tslots)) if args['mem_opt'] > 0: dyn.memory_optimization = args['mem_opt'] print("Using mem_opt={} from command line".format( dyn.memory_optimization)) print("evo_time={}".format(dyn.evo_time)) print("num_tslots={}".format(dyn.num_tslots)) if dyn.num_tslots == 0: dyn.num_tslots = dyn.num_qubits * 4 + 8 print("num_tslots calculated and set to be {}".format(dyn.num_tslots)) if len(dyn.coup_const) == 1: dyn.coup_const = dyn.coup_const[0] dyn.prop_computer = propcomp.PropCompFrechet(dyn) if dyn.dense_oper: dyn.oper_dtype = np.ndarray else: dyn.oper_dtype = Qobj # Create the TerminationConditions instance tc = termcond.TerminationConditions() tc.fid_err_targ = 1e-3 tc.min_gradient_norm = 1e-30 tc.max_iter = 2400 tc.max_wall_time = 120 * 60.0 tc.accuracy_factor = 1e5 if cfg.use_param_file: # load the termination condition parameters # note these will overide those above if present in the file print("Loading termination condition parameters from {}".format( cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, term_conds=tc) if args['fid_err_targ'] > 0.0: tc.fid_err_targ = args['fid_err_targ'] print("fid_err_targ = {} from command line".format(tc.fid_err_targ)) if args['max_wall_time'] > 0.0: tc.max_wall_time = args['max_wall_time'] print("max_wall_time = {} from command line".format(tc.max_wall_time)) # Fidelity oomputer ft = cfg.fid_type.lower() if ft == 'pure_choi_local': dyn.fid_computer = FidCompPureChoiLocal(dyn) elif ft == 'pure_choi_global': dyn.fid_computer = FidCompPureChoiGlobal(dyn) elif ft == 'unit_global': dyn.fid_computer = fidcomp.FidCompUnitary(dyn) dyn.fid_computer.local = False else: raise errors.UsageError("Unknown fid type {}".format(cfg.fid_type)) fid_comp = dyn.fid_computer fid_comp.numer_acc = 0.0 fid_comp.numer_acc_exact = False fid_comp.st_numer_acc = 0.01 fid_comp.end_numer_acc = 0.2 fid_comp.success_prop_uthresh = 0.95 fid_comp.success_prop_lthresh = 0.01 if cfg.use_param_file: # load the pulse generator parameters # note these will overide those above if present in the file print("Loading fidcomp parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, obj=dyn.fid_computer, section='fidcomp') if args['numer_acc'] >= 0.0: fid_comp.numer_acc = args['numer_acc'] print("numer_acc = {} from command line".format(fid_comp.numer_acc)) if not fid_comp.numer_acc_exact: fid_comp.numer_acc = round_sigfigs( fid_comp.numer_acc * tc.fid_err_targ, 6) fid_comp.st_numer_acc = round_sigfigs( fid_comp.st_numer_acc * tc.fid_err_targ, 6) fid_comp.end_numer_acc = round_sigfigs( fid_comp.end_numer_acc * tc.fid_err_targ, 6) # Pulse generator p_gen = pulsegen.create_pulse_gen(pulse_type=cfg.p_type, dyn=dyn) p_gen.all_ctrls_in_one = False p_gen.lbound = cfg.amp_lbound p_gen.ubound = cfg.amp_ubound if cfg.use_param_file: # load the pulse generator parameters # note these will overide those above if present in the file print("Loading pulsegen parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, pulsegen=p_gen) if not isinstance(p_gen, pulsegen.PulseGenCrab): if not (np.isinf(cfg.amp_lbound) or np.isinf(cfg.amp_ubound)): p_gen.scaling = cfg.amp_ubound - cfg.amp_lbound p_gen.offset = (cfg.amp_ubound + cfg.amp_lbound) / 2.0 if args['pulse_scaling'] > 0.0: p_gen.scaling = args['pulse_scaling'] print("p_gen.scaling = {} from command line".format(p_gen.scaling)) # Create the Optimiser instance if cfg.optim_method is None: raise errors.UsageError("Optimisation method must be specified " "via 'optim_method' parameter") om = cfg.optim_method.lower() if om == 'bfgs': optim = optimizer.OptimizerBFGS(cfg, dyn) elif om == 'lbfgsb': optim = optimizer.OptimizerLBFGSB(cfg, dyn) else: # Assume that the optim_method is valid optim = optimizer.Optimizer(cfg, dyn) optim.method = cfg.optim_method if cfg.verbosity > 1: print("Created optimiser of type {}".format(type(optim))) optim.config = cfg optim.dynamics = dyn optim.termination_conditions = tc optim.pulse_generator = p_gen optim.method_approach = 'DEF' optim.dumping = 'SUMMARY' if cfg.use_param_file: # load the optimiser parameters # note these will overide those above if present in the file print("Loading optimiser parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, optim=optim) optim.termination_conditions = tc if cfg.gen_stats: # Create a stats object # Note that stats object is optional # if the Dynamics and Optimizer stats attribute is not set # then no stats will be collected, which could improve performance stats_type = 'standard' try: stats_type = cfg.stats_type.lower() except: pass if stats_type == 'local': sts = qsostats.StatsFidCompLocal() else: sts = stats.Stats() dyn.stats = sts optim.stats = sts # **************************************************************** # Define the physics of the problem print("Configuring drift...") #The 4 below are all Qobj # Sx = sigmax() # Sy = sigmay() # Sz = sigmaz() # Si = identity(2) nq = dyn.num_qubits # ***** Drift ***** print("... for {} qubits".format(nq)) H_d = qso.get_drift(dyn) print("Drift dims {}".format(H_d.dims)) # Normalise based on ising chain H_d_ising_chain = qso.get_drift(dyn, topology='chain', interact='ising', coup_const=1.0) norm_fact = H_d_ising_chain.norm() / H_d.norm() print("Normalising drift with factor {}".format(norm_fact)) H_d = H_d * norm_fact # **** Controls **** H_c, Sx_cidx, Sy_cidx, Sz_cidx = qso.get_ctrls(dyn) n_ctrls = len(H_c) #t0 evo U_0 = qso.get_initial_op(dyn) #*** Target **** U_targ, U_local_targs = qso.get_target(dyn) sub_dims = [] for k in range(len(U_local_targs)): sub_dims.append(U_local_targs[k].dims[0][0]) #Enforcing all dimensions are correct for the qBranch code #Not all of these are needed, but this is safer for k in range(len(H_c)): H_c[k].dims = [sub_dims, sub_dims] H_d.dims = [sub_dims, sub_dims] U_0.dims = [sub_dims, sub_dims] U_targ.dims = [sub_dims, sub_dims] dyn.drift_dyn_gen = H_d dyn.ctrl_dyn_gen = H_c dyn.initial = U_0 dyn.target = U_targ # These are the indexes to the controls on the three axes dyn.Sx_cidx = Sx_cidx dyn.Sy_cidx = Sy_cidx dyn.Sz_cidx = Sz_cidx fid_comp.U_local_targs = U_local_targs fid_comp.sub_dims = sub_dims fid_comp.num_sub_sys = len(U_local_targs) print("Num acc: {}".format(fid_comp.numer_acc)) return optim
def gen_optim_objects(cfg, verbosity=None): """ Generate the optimiser objects based on the configuration Returns ------- Optimizer """ if verbosity is None: verbosity = cfg.verbosity def printv(msg, verb_tresh=1): if verbosity and verbosity >= verb_tresh: print(msg) dyn = dynamics.DynamicsUnitary(cfg) dyn.dense_oper = True dyn.memory_optimization = 1 # Number of timeslots for the pulse discretisation dyn.num_tslots = 12 # For a range of evo_time based on job_idx (cfg.idx_opt='num_tslots') # For a specific list of num_tslots values based on job_idx dyn.num_tslots_list = [] # Or generate a range dyn.st_num_tslots = 10 dyn.d_num_tslots = 5 dyn.num_num_tslots = 10 # Time allowed for the gate to evolve dyn.evo_time = 10.0 # For a range of evo_time based on job_idx (cfg.idx_opt='evo_time'): # For a specific list of evo_time values based on job_idx dyn.evo_time_list = [7, 10, 12, 20] # Or generate a range dyn.st_evo_time = 0.2 dyn.d_evo_time = 0.2 dyn.num_evo_time = 50 # Any number of qubits >= 3 can choosen. # However larger numbers take a lot of processing dyn.num_qubits = 3 # Only CNOT implemented for target_type dyn.target_type = 'CNOT' # interact options: Ising|Heisenberg| or combinations of xyz dyn.interact = 'Ising' # topology options: chain|star|full|ring dyn.topology = 'chain' # ctrls_type options: combinations of xyz dyn.ctrls_type = 'XY' # If True then same coupling constant will be used for # all interactions between qubit pairs dyn.iso_coup = True # Coupling strength for each interaction # If a single float, then this will be used for all interactions # (single float list will be converted to float) # Otherwise # If iso_coup=True then should be one list item per iteracting pair # If iso_coup=False then should be blocks of list items per iteracting pair # e.g. for 4 qubit Heisenberg chain: # [g_0x, g_1x, g_2x, g_0y, g_1y, g_2y, g_0z, g_1z, g_2z] # Note that the number of interacting pairs is n-1 for chain and star, # n for ring, and n*(n-1)/2 for fully connected dyn.coup_const = [1.0] # Used to change the order of the qubits in the Hilbert space # The two qubit gate will always be between 0 and 1, # but the couplings will be permuted based on hspace_order dyn.hspace_order = [] # When True the hspace_order will be automatically generated # based on the other attributes dyn.auto_hspace = False # Separation of the first and second qubits in the coupling Hilbert space # 0 implies adjacent, -1 implies random dyn.hspace_01_sep = 0 # Index of the first qubit in the coupling Hilbert space # -1 implies random dyn.hspace_0_idx = 0 # dynamical decoup attribs # These are the decoup amplitudes in the three axes dyn.decoup_x = 0.0 dyn.decoup_y = 0.0 dyn.decoup_z = 0.0 # num_decoup_tslots = None means use the specific mask # num_decoup_tslots = 0 use all # num_decoup_tslots +ve is the number of tslots from start # num_decoup_tslots -ve is the number of zeros at the end dyn.num_decoup_tslots = 0 dyn.decoup_tslots = [] #dyn.decoup_tslot_mask = [] if hasattr(cfg, 'args') and isinstance(cfg.args, argparse.ArgumentParser): parse_cl_args = True else: parse_cl_args = False if cfg.use_param_file: # load the dynamics parameters # note these will overide those above if present in the file printv("Loading dynamics parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, dynamics=dyn) if parse_cl_args: if cfg.args['num_qubits'] > 0: dyn.num_qubits = cfg.args['num_qubits'] printv("num_qubits = {} from command line".format(dyn.num_qubits)) # If job_idx is given, then use it to calculate some other parameter # (which supersedes all other settings) if cfg.job_idx and len(cfg.args['idx_opt']) > 0: cfg.ext_mp = True opt_str = cfg.args['idx_opt'].lower() if opt_str == 'evo_time': printv("basing evo_time on job_idx... ") num_evo_time = len(dyn.evo_time_list) if num_evo_time > 0: printv("...using evo_time_list") # get the evo time from the list T_idx = (cfg.job_idx - 1) % num_evo_time dyn.evo_time = dyn.evo_time_list[T_idx] else: printv("...using start and increment") # calculate the evo_time from job_idx T_idx = (cfg.job_idx - 1) % dyn.num_evo_time dyn.evo_time = (dyn.st_evo_time + dyn.d_evo_time*float(T_idx)) printv("evo_time={} for job idx {}".format(dyn.evo_time, cfg.job_idx)) elif opt_str == 'num_tslots': printv("basing num_tslots on job_idx... ") num_nts = len(dyn.num_tslots_list) if num_nts > 0: printv("...using num_tslots_list") nts_idx = (cfg.job_idx - 1) % num_nts dyn.num_tslots = dyn.num_tslots_list[nts_idx] else: printv("...using start and increment") # calculate the num_tslots from job_idx nts_idx = (cfg.job_idx - 1) % dyn.num_num_tslots dyn.num_tslots = (dyn.st_num_tslots + dyn.d_num_tslots*nts_idx) printv("num_tslots={} for job idx {}".format(dyn.num_tslots, cfg.job_idx)) else: raise ValueError("No option for idx_opt '{}' " "in command line".format(opt_str)) if cfg.args['evo_time'] > 0: dyn.evo_time = cfg.args['evo_time'] printv("Using evo_time={} from command line".format(dyn.evo_time)) if cfg.args['evo_time_npi'] > 0: dyn.evo_time = np.pi*cfg.args['evo_time_npi'] printv("Using evo_time={} from command line evo_time_npi".format( dyn.evo_time)) if cfg.args['evo_time_npi_g0s'] > 0: dyn.evo_time = np.pi*cfg.args['evo_time_npi_g0s']/dyn.coup_const[0] printv("Using evo_time={} from command line " "evo_time_npi_g0s".format(dyn.evo_time)) if cfg.args['num_tslots'] > 0: dyn.num_tslots = cfg.args['num_tslots'] printv("Using num_tslots={} from command line".format( dyn.num_tslots)) if cfg.args['mem_opt'] > 0: dyn.memory_optimization = cfg.args['mem_opt'] printv("Using mem_opt={} from command line".format( dyn.memory_optimization)) printv("evo_time={}".format(dyn.evo_time)) printv("num_tslots={}".format(dyn.num_tslots)) if dyn.num_tslots == 0: dyn.num_tslots = dyn.num_qubits*4 + 8 printv("num_tslots calculated and set to be {}".format(dyn.num_tslots)) if len(dyn.coup_const) == 1: dyn.coup_const = dyn.coup_const[0] dyn.prop_computer = propcomp.PropCompFrechet(dyn) if dyn.dense_oper: dyn.oper_dtype = np.ndarray else: dyn.oper_dtype = Qobj # Pulse optimisation termination conditions # Create the TerminationConditions instance tc = termcond.TerminationConditions() # Target for the infidelity (1 - gate fidelity) tc.fid_err_targ = 1e-3 # Sum of the gradients wrt optimisation parameters (timeslot amplitudes) tc.min_gradient_norm = 1e-30 # Number of iterations of the algorithm tc.max_iter = 2400 # Computation time (in seconds) tc.max_wall_time = 120*60.0 # Relative change in fid_err between iterations tc.accuracy_factor = 1e5 if cfg.use_param_file: # load the termination condition parameters # note these will overide those above if present in the file printv("Loading termination condition parameters from {}".format( cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, term_conds=tc) if parse_cl_args: if cfg.args['fid_err_targ'] > 0.0: tc.fid_err_targ = cfg.args['fid_err_targ'] printv("fid_err_targ = {} from cmd line".format(tc.fid_err_targ)) if cfg.args['max_wall_time'] > 0.0: tc.max_wall_time = cfg.args['max_wall_time'] printv("max_wall_time = {} from cmd line".format(tc.max_wall_time)) # Fidelity oomputer ft = cfg.fid_type.lower() if ft == 'pure_choi_local': dyn.fid_computer = FidCompPureChoiLocal(dyn) elif ft == 'pure_choi_global': dyn.fid_computer = FidCompPureChoiGlobal(dyn) elif ft == 'unit_global': dyn.fid_computer = fidcomp.FidCompUnitary(dyn) dyn.fid_computer.local = False else: raise errors.UsageError("Unknown fid type {}".format(cfg.fid_type)) fid_comp = dyn.fid_computer # If True and optim dumping set to at least SUMMARY, then the # global fid will be added to the summary (when using pure_choi_local) fid_comp.dump_global_choi_fid = False # This is the maximum precsion that sub-system fidelities are 'measured' # see choi_closed_fidcomp.my_round for details # Zero implies full machine precision fid_comp.numer_acc = 0.0 # These next parameters are used in the automatic search for the numerical # accuracy threshold # If numer_acc_exact==false, then numer_acc, st_numer_acc, end_numer_acc # will be treated as proportion of fid_err_targ (during config) fid_comp.numer_acc_exact = False fid_comp.st_numer_acc = 0.01 fid_comp.end_numer_acc = 0.2 # These proportions are used to determine the boundaries for the search # They are proportions of the number number of successful repeats # for the scenario. fid_comp.success_prop_uthresh = 0.95 fid_comp.success_prop_lthresh = 0.01 if cfg.use_param_file: # load the pulse generator parameters # note these will overide those above if present in the file printv("Loading fidcomp parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, obj=dyn.fid_computer, section='fidcomp') if parse_cl_args: if cfg.args['numer_acc'] >= 0.0: fid_comp.numer_acc = cfg.args['numer_acc'] printv("numer_acc = {} from cmd line".format(fid_comp.numer_acc)) if not fid_comp.numer_acc_exact: fid_comp.numer_acc = round_sigfigs( fid_comp.numer_acc*tc.fid_err_targ, 6) fid_comp.st_numer_acc = round_sigfigs( fid_comp.st_numer_acc*tc.fid_err_targ, 6) fid_comp.end_numer_acc = round_sigfigs( fid_comp.end_numer_acc*tc.fid_err_targ, 6) # Pulse generator p_gen = pulsegen.create_pulse_gen(pulse_type=cfg.p_type, dyn=dyn) p_gen.all_ctrls_in_one = False p_gen.lbound = cfg.amp_lbound p_gen.ubound = cfg.amp_ubound if cfg.use_param_file: # load the pulse generator parameters # note these will overide those above if present in the file printv("Loading pulsegen parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, pulsegen=p_gen) if not isinstance(p_gen, pulsegen.PulseGenCrab): if not (np.isinf(cfg.amp_lbound) or np.isinf(cfg.amp_ubound)): p_gen.scaling = cfg.amp_ubound - cfg.amp_lbound p_gen.offset = (cfg.amp_ubound + cfg.amp_lbound) / 2.0 if parse_cl_args: if cfg.args['pulse_scaling'] > 0.0: p_gen.scaling = cfg.args['pulse_scaling'] printv("p_gen.scaling = {} from cmd line".format(p_gen.scaling)) # Create the Optimiser instance if cfg.optim_method is None: raise errors.UsageError("Optimisation method must be specified " "via 'optim_method' parameter") om = cfg.optim_method.lower() if om == 'bfgs': optim = optimizer.OptimizerBFGS(cfg, dyn) elif om == 'lbfgsb': optim = optimizer.OptimizerLBFGSB(cfg, dyn) else: # Assume that the optim_method is valid optim = optimizer.Optimizer(cfg, dyn) optim.method = cfg.optim_method if cfg.verbosity > 1: printv("Created optimiser of type {}".format(type(optim)), 2) optim.config = cfg optim.dynamics = dyn optim.termination_conditions = tc optim.pulse_generator = p_gen optim.method_approach = 'DEF' optim.dumping = 'SUMMARY' if cfg.use_param_file: # load the optimiser parameters # note these will overide those above if present in the file printv("Loading optimiser parameters from {}".format(cfg.param_fpath)) loadparams.load_parameters(cfg.param_fpath, optim=optim) optim.termination_conditions = tc if cfg.gen_stats: # Create a stats object # Note that stats object is optional # if the Dynamics and Optimizer stats attribute is not set # then no stats will be collected, which could improve performance stats_type = 'standard' try: stats_type = cfg.stats_type.lower() except: pass if stats_type == 'local': sts = qsostats.StatsFidCompLocal() else: sts = stats.Stats() dyn.stats = sts optim.stats = sts return optim
def create_pulse_optimizer(drift, ctrls, initial, target, num_tslots=None, evo_time=None, tau=None, amp_lbound=-np.Inf, amp_ubound=np.Inf, fid_err_targ=1e-10, min_grad=1e-10, max_iter=500, max_wall_time=180, optim_alg='LBFGSB', max_metric_corr=10, accuracy_factor=1e7, dyn_type='GEN_MAT', prop_type='DEF', fid_type='DEF', phase_option=None, fid_err_scale_factor=None, amp_update_mode='ALL', init_pulse_type='RND', pulse_scaling=1.0, pulse_offset=0.0, log_level=logging.NOTSET, gen_stats=False): """ Generate the objects of the appropriate subclasses required for the pulse optmisation based on the parameters given Note this method may be preferable to calling optimize_pulse if more detailed configuration is required before running the optmisation algorthim, or the algorithm will be run many times, for instances when trying to finding global the optimum or minimum time optimisation Parameters ---------- drift : Qobj the underlying dynamics generator of the system ctrls : List of Qobj a list of control dynamics generators. These are scaled by the amplitudes to alter the overall dynamics initial : Qobj starting point for the evolution. Typically the identity matrix target : Qobj target transformation, e.g. gate or state, for the time evolution num_tslots : integer or None number of timeslots. None implies that timeslots will be given in the tau array evo_time : float or None total time for the evolution None implies that timeslots will be given in the tau array tau : array[num_tslots] of floats or None durations for the timeslots. if this is given then num_tslots and evo_time are dervived from it None implies that timeslot durations will be equal and calculated as evo_time/num_tslots amp_lbound : float or list of floats lower boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control amp_ubound : float or list of floats upper boundaries for the control amplitudes Can be a scalar value applied to all controls or a list of bounds for each control fid_err_targ : float Fidelity error target. Pulse optimisation will terminate when the fidelity error falls below this value mim_grad : float Minimum gradient. When the sum of the squares of the gradients wrt to the control amplitudes falls below this value, the optimisation terminates, assuming local minima max_iter : integer Maximum number of iterations of the optimisation algorithm max_wall_time : float Maximum allowed elapsed time for the optimisation algorithm optim_alg : string Multi-variable optimisation algorithm options are BFGS, LBFGSB (see Optimizer classes for details) max_metric_corr : integer The maximum number of variable metric corrections used to define the limited memory matrix. That is the number of previous gradient values that are used to approximate the Hessian see the scipy.optimize.fmin_l_bfgs_b documentation for description of m argument (used only in L-BFGS-B) accuracy_factor : float Determines the accuracy of the result. Typical values for accuracy_factor are: 1e12 for low accuracy; 1e7 for moderate accuracy; 10.0 for extremely high accuracy scipy.optimize.fmin_l_bfgs_b factr argument. (used only in L-BFGS-B) dyn_type : string Dynamics type, i.e. the type of matrix used to describe the dynamics. Options are UNIT, GEN_MAT, SYMPL (see Dynamics classes for details) prop_type : string Propagator type i.e. the method used to calculate the propagtors and propagtor gradient for each timeslot options are DEF, APPROX, DIAG, FRECHET, AUG_MAT DEF will use the default for the specific dyn_type (see PropagatorComputer classes for details) fid_type : string Fidelity error (and fidelity error gradient) computation method Options are DEF, UNIT, TRACEDIFF, TD_APPROX DEF will use the default for the specific dyn_type (See FideliyComputer classes for details) phase_option : string determines how global phase is treated in fidelity calculations (fid_type='UNIT' only). Options: PSU - global phase ignored SU - global phase included fid_err_scale_factor : float (used in TRACEDIFF FidelityComputer and subclasses only) The fidelity error calculated is of some arbitary scale. This factor can be used to scale the fidelity error such that it may represent some physical measure If None is given then it is caculated as 1/2N, where N is the dimension of the drift. amp_update_mode : string determines whether propagators are calculated Options: DEF, ALL, DYNAMIC (needs work) DEF will use the default for the specific dyn_type (See TimeslotComputer classes for details) init_pulse_type : string type / shape of pulse(s) used to initialise the the control amplitudes. Options include: RND, LIN, ZERO, SINE, SQUARE, TRIANGLE, SAW (see PulseGen classes for details) pulse_scaling : float Linear scale factor for generated pulses By default initial pulses are generated with amplitudes in the range (-1.0, 1.0). These will be scaled by this parameter pulse_offset : float Line offset for the pulse. That is this value will be added to any initial pulses generated. log_level : integer level of messaging output from the logger. Options are attributes of qutip.logging, in decreasing levels of messaging, are: DEBUG_INTENSE, DEBUG_VERBOSE, DEBUG, INFO, WARN, ERROR, CRITICAL Anything WARN or above is effectively 'quiet' execution, assuming everything runs as expected. The default NOTSET implies that the level will be taken from the QuTiP settings file, which by default is WARN Note value should be set using set_log_level gen_stats : boolean if set to True then statistics for the optimisation run will be generated - accessible through attributes of the stats object Returns ------- Instance of an Optimizer, through which the Config, Dynamics, PulseGen, and TerminationConditions objects can be accessed as attributes. The PropagatorComputer, FidelityComputer and TimeslotComputer objects can be accessed as attributes of the Dynamics object, e.g. optimizer.dynamics.fid_computer The optimisation can be run through the optimizer.run_optimization """ # check parameters if not isinstance(drift, Qobj): raise TypeError("drift must be a Qobj") else: drift = drift.full() if not isinstance(ctrls, (list, tuple)): raise TypeError("ctrls should be a list of Qobj") else: j = 0 for ctrl in ctrls: if not isinstance(ctrl, Qobj): raise TypeError("ctrls should be a list of Qobj") else: ctrls[j] = ctrl.full() j += 1 if not isinstance(initial, Qobj): raise TypeError("initial must be a Qobj") else: initial = initial.full() if not isinstance(target, Qobj): raise TypeError("target must be a Qobj") else: target = target.full() cfg = optimconfig.OptimConfig() cfg.optim_alg = optim_alg cfg.max_metric_corr = max_metric_corr cfg.accuracy_factor = accuracy_factor cfg.amp_update_mode = amp_update_mode cfg.dyn_type = dyn_type cfg.prop_type = prop_type cfg.fid_type = fid_type cfg.pulse_type = init_pulse_type cfg.phase_option = phase_option cfg.amp_lbound = amp_lbound cfg.amp_ubound = amp_ubound if log_level == logging.NOTSET: log_level = logger.getEffectiveLevel() else: logger.setLevel(log_level) cfg.log_level = log_level # Create the Dynamics instance if dyn_type == 'GEN_MAT' or dyn_type is None or dyn_type == '': dyn = dynamics.DynamicsGenMat(cfg) elif dyn_type == 'UNIT': dyn = dynamics.DynamicsUnitary(cfg) elif dyn_type == 'SYMPL': dyn = dynamics.DynamicsSymplectic(cfg) else: raise errors.UsageError("No option for dyn_type: " + dyn_type) # Create the PropagatorComputer instance # The default will be typically be the best option if prop_type == 'DEF' or prop_type is None or prop_type == '': # Do nothing use the default for the Dynamics pass elif prop_type == 'APPROX': if not isinstance(dyn.prop_computer, propcomp.PropCompApproxGrad): dyn.prop_computer = propcomp.PropCompApproxGrad(dyn) elif prop_type == 'DIAG': if not isinstance(dyn.prop_computer, propcomp.PropCompDiag): dyn.prop_computer = propcomp.PropCompDiag(dyn) elif prop_type == 'AUG_MAT': if not isinstance(dyn.prop_computer, propcomp.PropCompAugMat): dyn.prop_computer = propcomp.PropCompAugMat(dyn) elif prop_type == 'FRECHET': if not isinstance(dyn.prop_computer, propcomp.PropCompFrechet): dyn.prop_computer = propcomp.PropCompFrechet(dyn) else: raise errors.UsageError("No option for prop_type: " + prop_type) # Create the FideliyComputer instance # The default will be typically be the best option # Note: the FidCompTraceDiffApprox is a subclass of FidCompTraceDiff # so need to check this type first if fid_type == 'DEF' or fid_type is None or fid_type == '': # None given, use the default for the Dynamics pass elif fid_type == 'TDAPPROX': if not isinstance(dyn.fid_computer, fidcomp.FidCompTraceDiffApprox): dyn.fid_computer = fidcomp.FidCompTraceDiffApprox(dyn) elif fid_type == 'TRACEDIFF': if not isinstance(dyn.fid_computer, fidcomp.FidCompTraceDiff): dyn.fid_computer = fidcomp.FidCompTraceDiff(dyn) elif fid_type == 'UNIT': if not isinstance(dyn.fid_computer, fidcomp.FidCompUnitary): dyn.fid_computer = fidcomp.FidCompUnitary(dyn) else: raise errors.UsageError("No option for fid_type: " + fid_type) if isinstance(dyn.fid_computer, fidcomp.FidCompUnitary): dyn.fid_computer.set_phase_option(phase_option) if isinstance(dyn.fid_computer, fidcomp.FidCompTraceDiff): dyn.fid_computer.scale_factor = fid_err_scale_factor # Create the Optimiser instance # The class of the object will determine which multivar optimisation # algorithm is used if optim_alg == 'BFGS': optim = optimizer.OptimizerBFGS(cfg, dyn) elif optim_alg == 'LBFGSB': optim = optimizer.OptimizerLBFGSB(cfg, dyn) elif optim_alg is None: raise errors.UsageError("Optimisation algorithm must be specified " "via 'optim_alg' parameter") else: raise errors.UsageError("No option for optim_alg: " + optim_alg) # Create the TerminationConditions instance tc = termcond.TerminationConditions() tc.fid_err_targ = fid_err_targ tc.min_gradient_norm = min_grad tc.max_iterations = max_iter tc.max_wall_time = max_wall_time optim.termination_conditions = tc if gen_stats: # Create a stats object # Note that stats object is optional # if the Dynamics and Optimizer stats attribute is not set # then no stats will be collected, which could improve performance if amp_update_mode == 'DYNAMIC': sts = stats.StatsDynTsUpdate() else: sts = stats.Stats() dyn.stats = sts optim.stats = sts # Configure the dynamics dyn.drift_dyn_gen = drift dyn.ctrl_dyn_gen = ctrls dyn.initial = initial dyn.target = target if tau is None: # Check that parameters have been supplied to generate the # timeslot durations try: evo_time / num_tslots except: raise errors.UsageError( "Either the timeslot durations should be supplied as an " "array 'tau' or the number of timeslots 'num_tslots' " "and the evolution time 'evo_time' must be given.") dyn.num_tslots = num_tslots dyn.evo_time = evo_time else: dyn.tau = tau # this function is called, so that the num_ctrls attribute will be set dyn.get_num_ctrls() # Create a pulse generator of the type specified p_gen = pulsegen.create_pulse_gen(pulse_type=init_pulse_type, dyn=dyn) p_gen.scaling = pulse_scaling p_gen.offset = pulse_offset p_gen.lbound = amp_lbound p_gen.ubound = amp_ubound # If the pulse is a periodic type, then set the pulse to be one complete # wave if isinstance(p_gen, pulsegen.PulseGenPeriodic): p_gen.num_waves = 1.0 optim.pulse_generator = p_gen if log_level <= logging.DEBUG: logger.debug("Optimisation config summary...\n" " object classes:\n" " optimizer: " + optim.__class__.__name__ + "\n dynamics: " + dyn.__class__.__name__ + "\n tslotcomp: " + dyn.tslot_computer.__class__.__name__ + "\n fidcomp: " + dyn.fid_computer.__class__.__name__ + "\n propcomp: " + dyn.prop_computer.__class__.__name__ + "\n pulsegen: " + p_gen.__class__.__name__) return optim