Exemple #1
0
    def run_analytically(self, init_state=None, qc=None):
        """
        Simulate the state evolution under the given `qutip.QubitCircuit`
        with matrice exponentiation. It will calculate the propagator
        with matrix exponentiation and return a list of :class:`qutip.Qobj`.
        This method won't include noise or collpase.

        Parameters
        ----------
        qc: :class:`.QubitCircuit`, optional
            Takes the quantum circuit to be implemented. If not given, use
            the quantum circuit saved in the processor by ``load_circuit``.

        init_state: :class:`qutip.Qobj`, optional
            The initial state of the qubits in the register.

        Returns
        -------
        U_list: list
            A list of propagators obtained for the physical implementation.
        """
        if init_state is not None:
            U_list = [init_state]
        else:
            U_list = []
        tlist = self.get_full_tlist()
        coeffs = self.get_full_coeffs()

        # Compute drift Hamiltonians
        H_drift = 0
        for drift_ham in self.drift.drift_hamiltonians:
            H_drift += drift_ham.get_qobj(self.dims)

        # Compute control Hamiltonians
        for n in range(len(tlist)-1):
            H = H_drift + sum(
                [coeffs[m, n] * self.ctrls[m]
                    for m in range(len(self.ctrls))])
            dt = tlist[n + 1] - tlist[n]
            U = (-1j * H * dt).expm()
            U = self.eliminate_auxillary_modes(U)
            U_list.append(U)

        try:  # correct_global_phase are defined for ModelProcessor
            if self.correct_global_phase and self.global_phase != 0:
                U_list.append(globalphase(
                    self.global_phase, N=self.num_qubits)
                )
        except AttributeError:
            pass

        return U_list
Exemple #2
0
    def run_analytically(self, init_state=None, qc=None):
        """
        Simulate the state evolution under the given `qutip.QubitCircuit`
        with matrice exponentiation. It will calculate the propagator
        with matrix exponentiation and return a list of :class:`qutip.Qobj`.
        This method won't include noise or collpase.

        Parameters
        ----------
        qc: :class:`qutip.qip.QubitCircuit`, optional
            Takes the quantum circuit to be implemented. If not given, use
            the quantum circuit saved in the processor by ``load_circuit``.

        init_state: :class:`qutip.Qobj`, optional
            The initial state of the qubits in the register.

        Returns
        -------
        evo_result: :class:`qutip.Result`
            An instance of the class
            :class:`qutip.Result` will be returned.
        """
        # TODO change init_state to init_state
        if init_state is not None:
            U_list = [init_state]
        else:
            U_list = []
        tlist = self.get_full_tlist()
        # TODO replace this by get_complete_coeff
        coeffs = np.array(self.coeffs)
        for n in range(len(tlist) - 1):
            H = sum(
                [coeffs[m, n] * self.ctrls[m] for m in range(len(self.ctrls))])
            dt = tlist[n + 1] - tlist[n]
            U = (-1j * H * dt).expm()
            U = self.eliminate_auxillary_modes(U)
            U_list.append(U)

        try:  # correct_global_phase are defined for ModelProcessor
            if self.correct_global_phase and self.global_phase != 0:
                U_list.append(globalphase(self.global_phase, N=self.N))
        except AttributeError:
            pass

        return U_list