def mesolve(H, rho0, tlist, c_ops, e_ops, args={}, options=None, progress_bar=BaseProgressBar()): """ Master equation evolution of a density matrix for a given Hamiltonian. Evolve the state vector or density matrix (`rho0`) using a given Hamiltonian (`H`) and an [optional] set of collapse operators (`c_op_list`), by integrating the set of ordinary differential equations that define the system. In the absence of collapse operators the system is evolved according to the unitary evolution of the Hamiltonian. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). If e_ops is a callback function, it is invoked for each time in `tlist` with time and the state as arguments, and the function does not use any return values. **Time-dependent operators** For problems with time-dependent problems `H` and `c_ops` can be callback functions that takes two arguments, time and `args`, and returns the Hamiltonian or Liouvillian for the system at that point in time (*callback format*). Alternatively, `H` and `c_ops` can be a specified in a nested-list format where each element in the list is a list of length 2, containing an operator (:class:`qutip.qobj`) at the first element and where the second element is either a string (*list string format*), a callback function (*list callback format*) that evaluates to the time-dependent coefficient for the corresponding operator, or a numpy array (*list array format*) which specifies the value of the coefficient to the corresponding operator for each value of t in tlist. *Examples* H = [[H0, 'sin(w*t)'], [H1, 'sin(2*w*t)']] H = [[H0, sin(w*tlist)], [H1, sin(2*w*tlist)]] H = [[H0, f0_t], [H1, f1_t]] where f0_t and f1_t are python functions with signature f_t(t, args). In the *list string format* and *list callback format*, the string expression and the callback function must evaluate to a real or complex number (coefficient for the corresponding operator). In all cases of time-dependent operators, `args` is a dictionary of parameters that is used when evaluating operators. It is passed to the callback functions as second argument .. note:: If an element in the list-specification of the Hamiltonian or the list of collapse operators are in super-operator for it will be added to the total Liouvillian of the problem with out further transformation. This allows for using mesolve for solving master equations that are not on standard Lindblad form. .. note:: On using callback function: mesolve transforms all :class:`qutip.qobj` objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all :class:`qutip.qobj` objects that are used in constructing the Hamiltonian via args. mesolve will check for :class:`qutip.qobj` in `args` and handle the conversion to sparse matrices. All other :class:`qutip.qobj` objects that are not passed via `args` will be passed on to the integrator in scipy which will raise an NotImplemented exception. Parameters ---------- H : :class:`qutip.Qobj` system Hamiltonian, or a callback function for time-dependent Hamiltonians. rho0 : :class:`qutip.Qobj` initial density matrix or state vector (ket). tlist : *list* / *array* list of times for :math:`t`. c_ops : list of :class:`qutip.Qobj` single collapse operator, or list of collapse operators. e_ops : list of :class:`qutip.Qobj` / callback function single single operator or list of operators for which to evaluate expectation values. args : *dictionary* dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Options` with options for the ODE solver. progress_bar: TextProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Returns ------- output: :class:`qutip.solver` An instance of the class :class:`qutip.solver`, which contains either an *array* of expectation values for the times specified by `tlist`, or an *array* or state vectors or density matrices corresponding to the times in `tlist` [if `e_ops` is an empty list], or nothing if a callback function was given in place of operators for which to calculate the expectation values. """ # check whether c_ops or e_ops is is a single operator # if so convert it to a list containing only that operator if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # check for type (if any) of time-dependent inputs _, n_func, n_str = _td_format_check(H, c_ops) if options is None: options = Options() if (not options.rhs_reuse) or (not config.tdfunc): # reset config collapse and time-dependence flags to default values config.reset() res = None # # dispatch the appropriate solver # if ( (c_ops and len(c_ops) > 0) or (not isket(rho0)) or (isinstance(H, Qobj) and issuper(H)) or (isinstance(H, list) and isinstance(H[0], Qobj) and issuper(H[0])) ): # # we have collapse operators # # # find out if we are dealing with all-constant hamiltonian and # collapse operators or if we have at least one time-dependent # operator. Then delegate to appropriate solver... # if isinstance(H, Qobj): # constant hamiltonian if n_func == 0 and n_str == 0: # constant collapse operators res = _mesolve_const(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_str > 0: # constant hamiltonian but time-dependent collapse # operators in list string format res = _mesolve_list_str_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_func > 0: # constant hamiltonian but time-dependent collapse # operators in list function format res = _mesolve_list_func_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): # function-callback style time-dependence: must have constant # collapse operators if n_str > 0: # or n_func > 0: raise TypeError( "Incorrect format: function-format " + "Hamiltonian cannot be mixed with " + "time-dependent collapse operators." ) else: res = _mesolve_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance(H, list): # determine if we are dealing with list of [Qobj, string] or # [Qobj, function] style time-dependencies (for pure python and # cython, respectively) if n_func > 0: res = _mesolve_list_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: res = _mesolve_list_str_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: raise TypeError("Incorrect specification of Hamiltonian " + "or collapse operators.") else: # # no collapse operators: unitary dynamics # if n_func > 0: res = _sesolve_list_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif n_str > 0: res = _sesolve_list_str_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): res = _sesolve_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) else: res = _sesolve_const(H, rho0, tlist, e_ops, args, options, progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
def odesolve(H, rho0, tlist, c_op_list, e_ops, args=None, options=None): """ Master equation evolution of a density matrix for a given Hamiltonian. Evolution of a state vector or density matrix (`rho0`) for a given Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by integrating the set of ordinary differential equations that define the system. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). For problems with time-dependent Hamiltonians, `H` can be a callback function that takes two arguments, time and `args`, and returns the Hamiltonian at that point in time. `args` is a list of parameters that is passed to the callback function `H` (only used for time-dependent Hamiltonians). Parameters ---------- H : :class:`qutip.qobj` system Hamiltonian, or a callback function for time-dependent Hamiltonians. rho0 : :class:`qutip.qobj` initial density matrix or state vector (ket). tlist : *list* / *array* list of times for :math:`t`. c_op_list : list of :class:`qutip.qobj` list of collapse operators. e_ops : list of :class:`qutip.qobj` / callback function list of operators for which to evaluate expectation values. args : *dictionary* dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Options` with options for the ODE solver. Returns ------- output :array Expectation values of wavefunctions/density matrices for the times specified by `tlist`. Notes ----- On using callback function: odesolve transforms all :class:`qutip.qobj` objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all :class:`qutip.qobj` objects that are used in constructing the Hamiltonian via args. odesolve will check for :class:`qutip.qobj` in `args` and handle the conversion to sparse matrices. All other :class:`qutip.qobj` objects that are not passed via `args` will be passed on to the integrator to scipy who will raise an NotImplemented exception. Deprecated in QuTiP 2.0.0. Use :func:`mesolve` instead. """ warnings.warn("odesolve is deprecated since 2.0.0. Use mesolve instead.", DeprecationWarning) if debug: print(inspect.stack()[0][3]) if options is None: options = Options() if (c_op_list and len(c_op_list) > 0) or not isket(rho0): if isinstance(H, list): output = _mesolve_list_td(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) if isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): output = _mesolve_func_td(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) else: output = _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) else: if isinstance(H, list): output = _sesolve_list_td(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) if isinstance(H, (types.FunctionType, types.BuiltinFunctionType, partial)): output = _sesolve_func_td(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) else: output = _sesolve_const(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) if len(e_ops) > 0: return output.expect else: return output.states
def mesolve(H, rho0, tlist, c_ops, e_ops, args={}, options=None, progress_bar=BaseProgressBar()): """ Master equation evolution of a density matrix for a given Hamiltonian. Evolve the state vector or density matrix (`rho0`) using a given Hamiltonian (`H`) and an [optional] set of collapse operators (`c_op_list`), by integrating the set of ordinary differential equations that define the system. In the absense of collase operators the system is evolved according to the unitary evolution of the Hamiltonian. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). If e_ops is a callback function, it is invoked for each time in `tlist` with time and the state as arguments, and the function does not use any return values. **Time-dependent operators** For problems with time-dependent problems `H` and `c_ops` can be callback functions that takes two arguments, time and `args`, and returns the Hamiltonian or Liuovillian for the system at that point in time (*callback format*). Alternatively, `H` and `c_ops` can be a specified in a nested-list format where each element in the list is a list of length 2, containing an operator (:class:`qutip.qobj`) at the first element and where the second element is either a string (*list string format*) or a callback function (*list callback format*) that evaluates to the time-dependent coefficient for the corresponding operator. *Examples* H = [[H0, 'sin(w*t)'], [H1, 'sin(2*w*t)']] H = [[H0, f0_t], [H1, f1_t]] where f0_t and f1_t are python functions with signature f_t(t, args). In the *list string format* and *list callback format*, the string expression and the callback function must evaluate to a real or complex number (coefficient for the corresponding operator). In all cases of time-dependent operators, `args` is a dictionary of parameters that is used when evaluating operators. It is passed to the callback functions as second argument .. note:: If an element in the list-specification of the Hamiltonian or the list of collapse operators are in super-operator for it will be added to the total Liouvillian of the problem with out further transformation. This allows for using mesolve for solving master equations that are not on standard Lindblad form. .. note:: On using callback function: mesolve transforms all :class:`qutip.qobj` objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all :class:`qutip.qobj` objects that are used in constructing the Hamiltonian via args. odesolve will check for :class:`qutip.qobj` in `args` and handle the conversion to sparse matrices. All other :class:`qutip.qobj` objects that are not passed via `args` will be passed on to the integrator to scipy who will raise an NotImplemented exception. Parameters ---------- H : :class:`qutip.qobj` system Hamiltonian, or a callback function for time-dependent Hamiltonians. rho0 : :class:`qutip.qobj` initial density matrix or state vector (ket). tlist : *list* / *array* list of times for :math:`t`. c_ops : list of :class:`qutip.qobj` single collapse operator, or list of collapse operators. e_ops : list of :class:`qutip.qobj` / callback function single single operator or list of operators for which to evaluate expectation values. args : *dictionary* dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Odeoptions` with options for the ODE solver. Returns ------- output: :class:`qutip.odedata` An instance of the class :class:`qutip.odedata`, which contains either an *array* of expectation values for the times specified by `tlist`, or an *array* or state vectors or density matrices corresponding to the times in `tlist` [if `e_ops` is an empty list], or nothing if a callback function was given inplace of operators for which to calculate the expectation values. """ # check whether c_ops or e_ops is is a single operator # if so convert it to a list containing only that operator if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None # check for type (if any) of time-dependent inputs n_const, n_func, n_str = _ode_checks(H, c_ops) if options is None: options = Odeoptions() if (not options.rhs_reuse) or (not odeconfig.tdfunc): # reset odeconfig collapse and time-dependence flags to default values odeconfig.reset() res = None # # dispatch the appropriate solver # if ((c_ops and len(c_ops) > 0) or (not isket(rho0)) or (isinstance(H, Qobj) and issuper(H)) or (isinstance(H, list) and isinstance(H[0], Qobj) and issuper(H[0]))): # # we have collapse operators # # # find out if we are dealing with all-constant hamiltonian and # collapse operators or if we have at least one time-dependent # operator. Then delegate to appropriate solver... # if isinstance(H, Qobj): # constant hamiltonian if n_func == 0 and n_str == 0: # constant collapse operators res = _mesolve_const(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_str > 0: # constant hamiltonian but time-dependent collapse # operators in list string format res = _mesolve_list_str_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_func > 0: # constant hamiltonian but time-dependent collapse # operators in list function format res = _mesolve_list_func_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance( H, (types.FunctionType, types.BuiltinFunctionType, partial)): # old style time-dependence: must have constant collapse operators if n_str > 0: # or n_func > 0: raise TypeError("Incorrect format: function-format " + "Hamiltonian cannot be mixed with " + "time-dependent collapse operators.") else: res = _mesolve_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance(H, list): # determine if we are dealing with list of [Qobj, string] or # [Qobj, function] style time-dependencies (for pure python and # cython, respectively) if n_func > 0: res = _mesolve_list_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: res = _mesolve_list_str_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: raise TypeError("Incorrect specification of Hamiltonian " + "or collapse operators.") else: # # no collapse operators: unitary dynamics # if n_func > 0: res = _sesolve_list_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif n_str > 0: res = _sesolve_list_str_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif isinstance( H, (types.FunctionType, types.BuiltinFunctionType, partial)): res = _sesolve_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) else: res = _sesolve_const(H, rho0, tlist, e_ops, args, options, progress_bar) if e_ops_dict: res.expect = { e: res.expect[n] for n, e in enumerate(e_ops_dict.keys()) } return res
def odesolve(H, rho0, tlist, c_op_list, e_ops, args=None, options=None): """ Master equation evolution of a density matrix for a given Hamiltonian. Evolution of a state vector or density matrix (`rho0`) for a given Hamiltonian (`H`) and set of collapse operators (`c_op_list`), by integrating the set of ordinary differential equations that define the system. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). For problems with time-dependent Hamiltonians, `H` can be a callback function that takes two arguments, time and `args`, and returns the Hamiltonian at that point in time. `args` is a list of parameters that is passed to the callback function `H` (only used for time-dependent Hamiltonians). Parameters ---------- H : :class:`qutip.qobj` system Hamiltonian, or a callback function for time-dependent Hamiltonians. rho0 : :class:`qutip.qobj` initial density matrix or state vector (ket). tlist : *list* / *array* list of times for :math:`t`. c_op_list : list of :class:`qutip.qobj` list of collapse operators. e_ops : list of :class:`qutip.qobj` / callback function list of operators for which to evaluate expectation values. args : *dictionary* dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Odeoptions` with options for the ODE solver. Returns ------- output :array Expectation values of wavefunctions/density matrices for the times specified by `tlist`. Notes ----- On using callback function: odesolve transforms all :class:`qutip.qobj` objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all :class:`qutip.qobj` objects that are used in constructing the Hamiltonian via args. odesolve will check for :class:`qutip.qobj` in `args` and handle the conversion to sparse matrices. All other :class:`qutip.qobj` objects that are not passed via `args` will be passed on to the integrator to scipy who will raise an NotImplemented exception. Deprecated in QuTiP 2.0.0. Use :func:`mesolve` instead. """ warnings.warn("odesolve is deprecated since 2.0.0. Use mesolve instead.", DeprecationWarning) if debug: print(inspect.stack()[0][3]) if options is None: options = Odeoptions() if (c_op_list and len(c_op_list) > 0) or not isket(rho0): if isinstance(H, list): output = _mesolve_list_td(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) if isinstance( H, (types.FunctionType, types.BuiltinFunctionType, partial)): output = _mesolve_func_td(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) else: output = _mesolve_const(H, rho0, tlist, c_op_list, e_ops, args, options, BaseProgressBar()) else: if isinstance(H, list): output = _sesolve_list_td(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) if isinstance( H, (types.FunctionType, types.BuiltinFunctionType, partial)): output = _sesolve_func_td(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) else: output = _sesolve_const(H, rho0, tlist, e_ops, args, options, BaseProgressBar()) if len(e_ops) > 0: return output.expect else: return output.states
def mesolve(H, rho0, tlist, c_ops=[], e_ops=[], args={}, options=None, progress_bar=None, _safe_mode=True): """ Master equation evolution of a density matrix for a given Hamiltonian and set of collapse operators, or a Liouvillian. Evolve the state vector or density matrix (`rho0`) using a given Hamiltonian (`H`) and an [optional] set of collapse operators (`c_ops`), by integrating the set of ordinary differential equations that define the system. In the absence of collapse operators the system is evolved according to the unitary evolution of the Hamiltonian. The output is either the state vector at arbitrary points in time (`tlist`), or the expectation values of the supplied operators (`e_ops`). If e_ops is a callback function, it is invoked for each time in `tlist` with time and the state as arguments, and the function does not use any return values. If either `H` or the Qobj elements in `c_ops` are superoperators, they will be treated as direct contributions to the total system Liouvillian. This allows to solve master equations that are not on standard Lindblad form by passing a custom Liouvillian in place of either the `H` or `c_ops` elements. **Time-dependent operators** For time-dependent problems, `H` and `c_ops` can be callback functions that takes two arguments, time and `args`, and returns the Hamiltonian or Liouvillian for the system at that point in time (*callback format*). Alternatively, `H` and `c_ops` can be a specified in a nested-list format where each element in the list is a list of length 2, containing an operator (:class:`qutip.qobj`) at the first element and where the second element is either a string (*list string format*), a callback function (*list callback format*) that evaluates to the time-dependent coefficient for the corresponding operator, or a NumPy array (*list array format*) which specifies the value of the coefficient to the corresponding operator for each value of t in tlist. *Examples* H = [[H0, 'sin(w*t)'], [H1, 'sin(2*w*t)']] H = [[H0, f0_t], [H1, f1_t]] where f0_t and f1_t are python functions with signature f_t(t, args). H = [[H0, np.sin(w*tlist)], [H1, np.sin(2*w*tlist)]] In the *list string format* and *list callback format*, the string expression and the callback function must evaluate to a real or complex number (coefficient for the corresponding operator). In all cases of time-dependent operators, `args` is a dictionary of parameters that is used when evaluating operators. It is passed to the callback functions as second argument. **Additional options** Additional options to mesolve can be set via the `options` argument, which should be an instance of :class:`qutip.solver.Options`. Many ODE integration options can be set this way, and the `store_states` and `store_final_state` options can be used to store states even though expectation values are requested via the `e_ops` argument. .. note:: If an element in the list-specification of the Hamiltonian or the list of collapse operators are in superoperator form it will be added to the total Liouvillian of the problem with out further transformation. This allows for using mesolve for solving master equations that are not on standard Lindblad form. .. note:: On using callback function: mesolve transforms all :class:`qutip.qobj` objects to sparse matrices before handing the problem to the integrator function. In order for your callback function to work correctly, pass all :class:`qutip.qobj` objects that are used in constructing the Hamiltonian via args. mesolve will check for :class:`qutip.qobj` in `args` and handle the conversion to sparse matrices. All other :class:`qutip.qobj` objects that are not passed via `args` will be passed on to the integrator in scipy which will raise an NotImplemented exception. Parameters ---------- H : :class:`qutip.Qobj` System Hamiltonian, or a callback function for time-dependent Hamiltonians, or alternatively a system Liouvillian. rho0 : :class:`qutip.Qobj` initial density matrix or state vector (ket). tlist : *list* / *array* list of times for :math:`t`. c_ops : list of :class:`qutip.Qobj` single collapse operator, or list of collapse operators, or a list of Liouvillian superoperators. e_ops : list of :class:`qutip.Qobj` / callback function single single operator or list of operators for which to evaluate expectation values. args : *dictionary* dictionary of parameters for time-dependent Hamiltonians and collapse operators. options : :class:`qutip.Options` with options for the solver. progress_bar : BaseProgressBar Optional instance of BaseProgressBar, or a subclass thereof, for showing the progress of the simulation. Returns ------- result: :class:`qutip.Result` An instance of the class :class:`qutip.Result`, which contains either an *array* `result.expect` of expectation values for the times specified by `tlist`, or an *array* `result.states` of state vectors or density matrices corresponding to the times in `tlist` [if `e_ops` is an empty list], or nothing if a callback function was given in place of operators for which to calculate the expectation values. """ # check whether c_ops or e_ops is is a single operator # if so convert it to a list containing only that operator if isinstance(c_ops, Qobj): c_ops = [c_ops] if isinstance(e_ops, Qobj): e_ops = [e_ops] if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None if _safe_mode: _solver_safety_check(H, rho0, c_ops, e_ops, args) if progress_bar is None: progress_bar = BaseProgressBar() elif progress_bar is True: progress_bar = TextProgressBar() # check if rho0 is a superoperator, in which case e_ops argument should # be empty, i.e., e_ops = [] if issuper(rho0) and not e_ops == []: raise TypeError("Must have e_ops = [] when initial condition rho0 is" + " a superoperator.") # convert array based time-dependence to string format H, c_ops, args = _td_wrap_array_str(H, c_ops, args, tlist) # check for type (if any) of time-dependent inputs _, n_func, n_str = _td_format_check(H, c_ops) if options is None: options = Options() if (not options.rhs_reuse) or (not config.tdfunc): # reset config collapse and time-dependence flags to default values config.reset() #check if should use OPENMP check_use_openmp(options) res = None # # dispatch the appropriate solver # if ((c_ops and len(c_ops) > 0) or (not isket(rho0)) or (isinstance(H, Qobj) and issuper(H)) or (isinstance(H, list) and isinstance(H[0], Qobj) and issuper(H[0]))): # # we have collapse operators, or rho0 is not a ket, # or H is a Liouvillian # # # find out if we are dealing with all-constant hamiltonian and # collapse operators or if we have at least one time-dependent # operator. Then delegate to appropriate solver... # if isinstance(H, Qobj): # constant hamiltonian if n_func == 0 and n_str == 0: # constant collapse operators res = _mesolve_const(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_str > 0: # constant hamiltonian but time-dependent collapse # operators in list string format res = _mesolve_list_str_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif n_func > 0: # constant hamiltonian but time-dependent collapse # operators in list function format res = _mesolve_list_func_td([H], rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance( H, (types.FunctionType, types.BuiltinFunctionType, partial)): # function-callback style time-dependence: must have constant # collapse operators if n_str > 0: # or n_func > 0: raise TypeError("Incorrect format: function-format " + "Hamiltonian cannot be mixed with " + "time-dependent collapse operators.") else: res = _mesolve_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) elif isinstance(H, list): # determine if we are dealing with list of [Qobj, string] or # [Qobj, function] style time-dependencies (for pure python and # cython, respectively) if n_func > 0: res = _mesolve_list_func_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: res = _mesolve_list_str_td(H, rho0, tlist, c_ops, e_ops, args, options, progress_bar) else: raise TypeError("Incorrect specification of Hamiltonian " + "or collapse operators.") else: # # no collapse operators: unitary dynamics # if n_func > 0: res = _sesolve_list_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif n_str > 0: res = _sesolve_list_str_td(H, rho0, tlist, e_ops, args, options, progress_bar) elif isinstance( H, (types.FunctionType, types.BuiltinFunctionType, partial)): res = _sesolve_func_td(H, rho0, tlist, e_ops, args, options, progress_bar) else: res = _sesolve_const(H, rho0, tlist, e_ops, args, options, progress_bar) if e_ops_dict: res.expect = { e: res.expect[n] for n, e in enumerate(e_ops_dict.keys()) } return res