Exemple #1
0
def _ptrace(rho, sel):
    """
    Private function calculating the partial trace.
    """

    if isinstance(sel, int):
        sel = np.array([sel])
    else:
        sel = np.asarray(sel)

    if (sel < 0).any() or (sel >= len(rho.dims[0])).any():
        raise TypeError("Invalid selection index in ptrace.")

    drho = rho.dims[0]
    N = np.prod(drho)
    M = np.prod(np.asarray(drho).take(sel))

    if np.prod(rho.dims[1]) == 1:
        rho = rho * rho.dag()

    perm = sp.lil_matrix((M * M, N * N))
    # all elements in range(len(drho)) not in sel set
    rest = np.setdiff1d(np.arange(len(drho)), sel)
    ilistsel = _select(sel, drho)
    indsel = _list2ind(ilistsel, drho)
    ilistrest = _select(rest, drho)
    indrest = _list2ind(ilistrest, drho)
    irest = (indrest - 1) * N + indrest - 2
    # Possibly use parfor here if M > some value ?
    # We have to initialise like this to get a numpy array of lists rather than
    # a standard numpy 2d array.  Scipy >= 1.5 requires that we do this, rather
    # than just pass a 2d array, and scipy < 1.5 will accept it (because it's
    # actually the correct format).
    perm.rows = np.empty((M * M,), dtype=object)
    perm.data = np.empty((M * M,), dtype=object)
    for m in range(M * M):
        perm.rows[m] = list((irest
                             + (indsel[int(np.floor(m / M))] - 1)*N
                             + indsel[int(np.mod(m, M))]).T[0])
        perm.data[m] = [1.0] * len(perm.rows[m])
    perm = perm.tocsr()
    rhdata = perm * sp_reshape(rho.data, (np.prod(rho.shape), 1))
    rho1_data = sp_reshape(rhdata, (M, M))
    dims_kept0 = np.asarray(rho.dims[0]).take(sel)
    dims_kept1 = np.asarray(rho.dims[0]).take(sel)
    rho1_dims = [dims_kept0.tolist(), dims_kept1.tolist()]
    rho1_shape = [np.prod(dims_kept0), np.prod(dims_kept1)]
    return rho1_data, rho1_dims, rho1_shape
Exemple #2
0
def operator_to_vector(op):
    """
    Create a vector representation given a quantum operator in matrix form.
    The passed object should have a ``Qobj.type`` of 'oper' or 'super'; this
    function is not designed for general-purpose matrix reshaping.

    Parameters
    ----------
    op : Qobj or QobjEvo
        Quantum operator in matrix form.  This must have a type of 'oper' or
        'super'.

    Returns
    -------
    Qobj or QobjEvo
        The same object, but re-cast into a column-stacked-vector form of type
        'operator-ket'.  The output is the same type as the passed object.
    """
    if isinstance(op, QobjEvo):
        return op.apply(operator_to_vector)
    if not (op.isoper or op.issuper):
        raise ValueError("only valid for operator matrices")
    size = op.shape[0] * op.shape[1]
    return Qobj(
        sp_reshape(op.data.T, (size, 1)),
        dims=[op.dims, [1]],
        shape=(size, 1),
        type='operator-ket',
        copy=False,
    )
Exemple #3
0
def vector_to_operator(op):
    """
    Create a matrix representation given a quantum operator in vector form.
    The passed object should have a ``Qobj.type`` of 'operator-ket'; this
    function is not designed for general-purpose matrix reshaping.

    Parameters
    ----------
    op : Qobj or QobjEvo
        Quantum operator in column-stacked-vector form.  This must have a type
        of 'operator-ket'.

    Returns
    -------
    Qobj or QobjEvo
        The same object, but re-cast into "standard" operator form.  The output
        is the same type as the passed object.
    """
    if isinstance(op, QobjEvo):
        return op.apply(vector_to_operator)
    if not op.isoperket:
        raise ValueError(
            "only valid for operators in column-stacked 'operator-ket' format")
    # e.g. op.dims = [ [[rows], [cols]], [1]]
    dims = op.dims[0]
    shape = (np.prod(dims[0]), np.prod(dims[1]))
    return Qobj(
        sp_reshape(op.data.T, shape[::-1]).T,
        dims=dims,
        shape=shape,
        copy=False,
    )
Exemple #4
0
def operator_to_vector(op):
    """
    Create a vector representation of a quantum operator given
    the matrix representation.
    """
    q = Qobj()
    q.dims = [op.dims, [1]]
    q.data = sp_reshape(op.data.T, (np.prod(op.shape), 1))
    return q
Exemple #5
0
def vector_to_operator(op):
    """
    Create a matrix representation given a quantum operator in
    vector form.
    """
    q = Qobj()
    q.dims = op.dims[0]
    q.data = sp_reshape(op.data.H, q.shape)
    return q
Exemple #6
0
def _ptrace(rho, sel):
    """
    Private function calculating the partial trace.
    """

    if isinstance(sel, int):
        sel = np.array([sel])
    else:
        sel = np.asarray(sel)

    if (sel < 0).any() or (sel >= len(rho.dims[0])).any():
        raise TypeError("Invalid selection index in ptrace.")

    drho = rho.dims[0]
    N = np.prod(drho)
    M = np.prod(np.asarray(drho).take(sel))

    if np.prod(rho.dims[1]) == 1:
        rho = rho * rho.dag()

    perm = sp.lil_matrix((M * M, N * N))
    # all elements in range(len(drho)) not in sel set
    rest = np.setdiff1d(np.arange(len(drho)), sel)
    ilistsel = _select(sel, drho)
    indsel = _list2ind(ilistsel, drho)
    ilistrest = _select(rest, drho)
    indrest = _list2ind(ilistrest, drho)
    irest = (indrest - 1) * N + indrest - 2
    # Possibly use parfor here if M > some value ?
    perm.rows = np.array(
        [(irest + (indsel[int(np.floor(m / M))] - 1) * N +
         indsel[int(np.mod(m, M))]).T[0]
         for m in range(M ** 2)])
    # perm.data = np.ones_like(perm.rows,dtype=int)
    perm.data = np.ones_like(perm.rows)
    perm.tocsr()
    rhdata = perm * sp_reshape(rho.data, (np.prod(rho.shape), 1))
    rho1_data = sp_reshape(rhdata, (M, M))
    dims_kept0 = np.asarray(rho.dims[0]).take(sel)
    dims_kept1 = np.asarray(rho.dims[0]).take(sel)
    rho1_dims = [dims_kept0.tolist(), dims_kept1.tolist()]
    rho1_shape = [np.prod(dims_kept0), np.prod(dims_kept1)]
    return rho1_data, rho1_dims, rho1_shape
Exemple #7
0
def vector_to_operator(op):
    """
    Create a matrix representation given a quantum operator in
    vector form.
    """
    q = Qobj()
    q.dims = op.dims[0]
    n = int(np.sqrt(op.shape[0]))
    q.data = sp_reshape(op.data.T, (n, n)).T
    return q
Exemple #8
0
def _ptrace(rho, sel):
    """
    Private function calculating the partial trace.
    """

    if isinstance(sel, int):
        sel = np.array([sel])
    else:
        sel = np.asarray(sel)

    if (sel < 0).any() or (sel >= len(rho.dims[0])).any():
        raise TypeError("Invalid selection index in ptrace.")

    drho = rho.dims[0]
    N = np.prod(drho)
    M = np.prod(np.asarray(drho).take(sel))

    if np.prod(rho.dims[1]) == 1:
        rho = rho * rho.dag()

    perm = sp.lil_matrix((M * M, N * N))
    # all elements in range(len(drho)) not in sel set
    rest = np.setdiff1d(np.arange(len(drho)), sel)
    ilistsel = _select(sel, drho)
    indsel = _list2ind(ilistsel, drho)
    ilistrest = _select(rest, drho)
    indrest = _list2ind(ilistrest, drho)
    irest = (indrest - 1) * N + indrest - 2
    # Possibly use parfor here if M > some value ?
    perm.rows = np.array([(irest + (indsel[int(np.floor(m / M))] - 1) * N +
                           indsel[int(np.mod(m, M))]).T[0]
                          for m in range(M**2)])
    # perm.data = np.ones_like(perm.rows,dtype=int)
    perm.data = np.ones_like(perm.rows)
    perm = perm.tocsr()
    rhdata = perm * sp_reshape(rho.data, (np.prod(rho.shape), 1))
    rho1_data = sp_reshape(rhdata, (M, M))
    dims_kept0 = np.asarray(rho.dims[0]).take(sel)
    dims_kept1 = np.asarray(rho.dims[0]).take(sel)
    rho1_dims = [dims_kept0.tolist(), dims_kept1.tolist()]
    rho1_shape = [np.prod(dims_kept0), np.prod(dims_kept1)]
    return rho1_data, rho1_dims, rho1_shape
Exemple #9
0
def operator_to_vector(op):
    """
    Create a vector representation of a quantum operator given
    the matrix representation.
    """
    q = Qobj()
    q.shape = [prod(op.shape), 1]
    q.dims = [op.dims, [1]]
    q.data = sp_reshape(op.data.T, tuple(q.shape))
    q.type = 'operator-vector'
    return q
Exemple #10
0
def vector_to_operator(op):
    """
    Create a matrix representation given a quantum operator in
    vector form.
    """
    q = Qobj()
    q.shape = [op.dims[0][0][0], op.dims[0][1][0]]
    q.dims = op.dims[0]
    q.data = sp_reshape(op.data.H, tuple(q.shape))
    q.type = 'oper'
    return q
Exemple #11
0
def operator_to_vector(op):
    """
    Create a vector representation of a quantum operator given
    the matrix representation.
    """
    q = Qobj()
    q.shape = [prod(op.shape), 1]
    q.dims = [op.dims, [1]]
    q.data = sp_reshape(op.data.T, tuple(q.shape))
    q.type = 'operator-vector'
    return q
Exemple #12
0
def vector_to_operator(op):
    """
    Create a matrix representation given a quantum operator in
    vector form.
    """
    q = Qobj()
    q.shape = [op.dims[0][0][0], op.dims[0][1][0]]
    q.dims = op.dims[0]
    q.data = sp_reshape(op.data.H, tuple(q.shape))
    q.type = 'oper'
    return q
Exemple #13
0
def operator_to_vector(op):
    """
    Create a vector representation of a quantum operator given
    the matrix representation.
    """
    if isinstance(op, QobjEvo):
        return op.apply(operator_to_vector)

    q = Qobj()
    q.dims = [op.dims, [1]]
    q.data = sp_reshape(op.data.T, (np.prod(op.shape), 1))
    return q
Exemple #14
0
def _steadystate_power(L,
                       maxiter=10,
                       tol=1e-6,
                       itertol=1e-5,
                       use_umfpack=True,
                       verbose=False):
    """
    Inverse power method for steady state solving.
    """
    if verbose:
        print('Starting iterative power method Solver...')
    use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
        rhoss.shape = [prod(rhoss.dims[0]), prod(rhoss.dims[1])]
    else:
        rhoss.dims = [L.dims[0], 1]
        rhoss.shape = [prod(rhoss.dims[0]), 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (tol**2) * sp.eye(n, n, format='csc')
    L.sort_indices()
    v = mat2vec(rand_dm(rhoss.shape[0], 0.5 / rhoss.shape[0] + 0.5).full())
    if verbose:
        start_time = time.time()
    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = spsolve(L, v, use_umfpack=use_umfpack)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' + str(maxiter) +
                        ' iterations')
    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if verbose:
        print('Power solver time: ', time.time() - start_time)
    if qset.auto_tidyup:
        return rhoss.tidyup()
    else:
        return rhoss
Exemple #15
0
def vector_to_operator(op):
    """
    Create a matrix representation given a quantum operator in
    vector form.
    """
    if isinstance(op, QobjEvo):
        return op.apply(vector_to_operator)

    q = Qobj()
    # e.g. op.dims = [ [[rows], [cols]], [1]]
    q.dims = op.dims[0]
    shape = (np.prod(q.dims[0]), np.prod(q.dims[1]))
    q.data = sp_reshape(op.data.T, shape[::-1]).T
    return q
Exemple #16
0
def _steadystate_power(L, maxiter=10, tol=1e-6, itertol=1e-5, use_umfpack=True,
                       verbose=False):
    """
    Inverse power method for steady state solving.
    """
    if verbose:
        print('Starting iterative power method Solver...')
    use_solver(assumeSortedIndices=True, useUmfpack=use_umfpack)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
        rhoss.shape = [prod(rhoss.dims[0]), prod(rhoss.dims[1])]
    else:
        rhoss.dims = [L.dims[0], 1]
        rhoss.shape = [prod(rhoss.dims[0]), 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (tol ** 2) * sp.eye(n, n, format='csc')
    L.sort_indices()
    v = mat2vec(rand_dm(rhoss.shape[0], 0.5 / rhoss.shape[0] + 0.5).full())
    if verbose:
        start_time = time.time()
    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = spsolve(L, v, use_umfpack=use_umfpack)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' +
                        str(maxiter) + ' iterations')
    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if verbose:
        print('Power solver time: ', time.time() - start_time)
    if qset.auto_tidyup:
        return rhoss.tidyup()
    else:
        return rhoss
Exemple #17
0
def _steadystate_power(L, ss_args):
    """
    Inverse power method for steady state solving.
    """
    if settings.debug:
        print('Starting iterative power method Solver...')
    tol=ss_args['tol']
    maxiter=ss_args['maxiter']
    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
    else:
        rhoss.dims = [L.dims[0], 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (tol ** 2) * sp.eye(n, n, format='csc')
    L.sort_indices()
    v = mat2vec(rand_dm(rhoss.shape[0], 0.5 / rhoss.shape[0] + 0.5).full())

    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = spsolve(L, v)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' +
                        str(maxiter) + ' iterations')
    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True

    return rhoss
Exemple #18
0
def _steadystate_power(L, ss_args):
    """
    Inverse power method for steady state solving.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting iterative inverse-power method solver.')
    tol = ss_args['tol']
    maxiter = ss_args['maxiter']

    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
    else:
        rhoss.dims = [L.dims[0], 1]
    n = L.shape[0]
    # Build Liouvillian
    L, perm, perm2, rev_perm, ss_args = _steadystate_power_liouvillian(
        L, ss_args)
    orig_nnz = L.nnz
    # start with all ones as RHS
    v = np.ones(n, dtype=complex)
    if ss_args['use_rcm']:
        v = v[np.ix_(perm2, )]

    # Do preconditioning
    if ss_args['M'] is None and ss_args['use_precond'] and \
            ss_args['method'] in ['power-gmres',
                                'power-lgmres', 'power-bicgstab']:
        ss_args['M'], ss_args = _iterative_precondition(
            L, int(np.sqrt(n)), ss_args)
        if ss_args['M'] is None:
            warnings.warn("Preconditioning failed. Continuing without.",
                          UserWarning)

    ss_iters = {'iter': 0}

    def _iter_count(r):
        ss_iters['iter'] += 1
        return

    _power_start = time.time()
    # Get LU factors
    if ss_args['method'] == 'power':
        lu = splu(L,
                  permc_spec=ss_args['permc_spec'],
                  diag_pivot_thresh=ss_args['diag_pivot_thresh'],
                  options=dict(ILU_MILU=ss_args['ILU_MILU']))

        if settings.debug and _scipy_check:
            L_nnz = lu.L.nnz
            U_nnz = lu.U.nnz
            logger.debug('L NNZ: %i ; U NNZ: %i' % (L_nnz, U_nnz))
            logger.debug('Fill factor: %f' % ((L_nnz + U_nnz) / orig_nnz))

    it = 0
    _tol = np.max(ss_args['tol'] / 10,
                  1e-15)  # Should make this user accessible
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):

        if ss_args['method'] == 'power':
            v = lu.solve(v)
        elif ss_args['method'] == 'power-gmres':
            v, check = gmres(L,
                             v,
                             tol=_tol,
                             M=ss_args['M'],
                             x0=ss_args['x0'],
                             restart=ss_args['restart'],
                             maxiter=ss_args['maxiter'],
                             callback=_iter_count)
        elif ss_args['method'] == 'power-lgmres':
            v, check = lgmres(L,
                              v,
                              tol=_tol,
                              M=ss_args['M'],
                              x0=ss_args['x0'],
                              maxiter=ss_args['maxiter'],
                              callback=_iter_count)
        elif ss_args['method'] == 'power-bicgstab':
            v, check = bicgstab(L,
                                v,
                                tol=_tol,
                                M=ss_args['M'],
                                x0=ss_args['x0'],
                                maxiter=ss_args['maxiter'],
                                callback=_iter_count)
        else:
            raise Exception("Invalid iterative solver method.")

        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' + str(maxiter) +
                        ' iterations')

    _power_end = time.time()
    ss_args['info']['solution_time'] = _power_end - _power_start
    ss_args['info']['iterations'] = it
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L * v)
    if settings.debug:
        logger.debug('Number of iterations: %i' % it)

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm, )]

    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if ss_args['return_info']:
        return rhoss, ss_args['info']
    else:
        return rhoss
Exemple #19
0
def _steadystate_power(L, ss_args):
    """
    Inverse power method for steady state solving.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting iterative inverse-power method solver.')
    tol = ss_args['tol']
    maxiter = ss_args['maxiter']

    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
    else:
        rhoss.dims = [L.dims[0], 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (1e-15) * sp.eye(n, n, format='csc')
    L.sort_indices()
    orig_nnz = L.nnz

    # start with all ones as RHS
    v = np.ones(n, dtype=complex)

    if ss_args['use_rcm']:
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            logger.debug('Original bandwidth: %i' % old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        v = v[np.ix_(perm, )]
        if settings.debug:
            new_band = sp_bandwidth(L)[0]
            logger.debug('RCM bandwidth: %i' % new_band)
            logger.debug('Bandwidth reduction factor: %f' %
                         round(old_band / new_band, 2))

    _power_start = time.time()
    # Get LU factors
    lu = splu(L,
              permc_spec=ss_args['permc_spec'],
              diag_pivot_thresh=ss_args['diag_pivot_thresh'],
              options=dict(ILU_MILU=ss_args['ILU_MILU']))

    if settings.debug and _scipy_check:
        L_nnz = lu.L.nnz
        U_nnz = lu.U.nnz
        logger.debug('L NNZ: %i ; U NNZ: %i' % (L_nnz, U_nnz))
        logger.debug('Fill factor: %f' % ((L_nnz + U_nnz) / orig_nnz))

    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = lu.solve(v)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' + str(maxiter) +
                        ' iterations')

    _power_end = time.time()
    ss_args['info']['solution_time'] = _power_end - _power_start
    ss_args['info']['iterations'] = it
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L * v, np.inf)
    if settings.debug:
        logger.debug('Number of iterations: %i' % it)

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm, )]

    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if ss_args['return_info']:
        return rhoss, ss_args['info']
    else:
        return rhoss
def partial_trace(rho_data, rho_dims, sel, perm=None):
    """Compute the partial trace of the matrix

    Parameters
    ----------
    rho_data : csr_matrix or ndarray
        Matrix for which the partial trace will be computed

    rho_dims : list
        Subsystem dimensions

    sel : int/list
        An ``int`` or ``list`` of components to keep after partial trace.

    perm : ndarray
        Optionally a pre computed permutation matrix can be provided
        This may be more efficient if the same partial trace (sel)
        is to be computed for matices of the same sub-system dimensions.
        It can be calculated using the calc_perm function

    Returns
    -------
    rho1_data : qobj
        Matrix representing partial trace with selected components remaining.
    rho1_dims : list
        Subsystem dimensions for output matrix
    rho1_shape : tuple
        Shape of output matrix
    """

    #print("rho_dims {} (type: {})".format(rho_dims, type(rho_dims)))
    #print("sel {} (type: {})".format(sel, type(sel)))
    if isinstance(sel, int):
        sel = np.array([sel])
    else:
        sel = np.asarray(sel)

    if (sel < 0).any() or (sel >= len(rho_dims[0])).any():
        raise TypeError("Invalid selection index in ptrace.")

    sparse = sp.issparse(rho_data)

    if np.prod(rho_dims[1]) == 1:
        rho_data = rho_data.dot(rho_data.T.conj())

    rho1_dims = [
        np.asarray(rho_dims[0]).take(sel).tolist(),
        np.asarray(rho_dims[0]).take(sel).tolist()
    ]
    rho1_shape = (np.prod(rho1_dims[0]), np.prod(rho1_dims[1]))

    if perm is None:
        perm = calc_perm(rho_dims, sel, sparse=sparse)

    if sparse:
        rhdata = perm * sp_reshape(rho_data, [np.prod(rho_dims[0])**2, 1])
        rhdata = rhdata.tolil().reshape(rho1_shape)
        rho1_data = rhdata.tocsr()
    else:
        rho1_data = np.reshape(
            np.sum(np.reshape(rho_data.flatten()[perm.flatten()], perm.shape),
                   1), rho1_shape)

    return rho1_data, rho1_dims, rho1_shape
Exemple #21
0
def propagator(H, t, c_op_list=[], args={}, options=None,
               unitary_mode='batch', parallel=False, 
               progress_bar=None, **kwargs):
    """
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\\rho_{\mathrm vec}(t) = U(t) \\rho_{\mathrm vec}(0)`
    where :math:`\\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    unitary_mode = str ('batch', 'single')
        Solve all basis vectors simulaneously ('batch') or individually 
        ('single').
    
    parallel : bool {False, True}
        Run the propagator in parallel mode. This will override the 
        unitary_mode settings if set to True.
    
    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']
    
    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    td_type = _td_format_check(H, c_op_list, solver='me')
        
    if isinstance(H, (types.FunctionType, types.BuiltinFunctionType,
                      functools.partial)):
        H0 = H(0.0, args)
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H
    
    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims
        
        if parallel:
            unitary_mode = 'single'
            u = np.zeros([N, N, len(tlist)], dtype=complex)
            output = parallel_map(_parallel_sesolve,range(N),
                    task_args=(N,H, tlist,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T 
        else:
            if unitary_mode == 'single':
                u = np.zeros([N, N, len(tlist)], dtype=complex)
                progress_bar.start(N)
                for n in range(0, N):
                    progress_bar.update(n)
                    psi0 = basis(N, n)
                    output = sesolve(H, psi0, tlist, [], args, options, _safe_mode=False) 
                    for k, t in enumerate(tlist):
                        u[:, n, k] = output.states[k].full().T
                    progress_bar.finished() 

            elif unitary_mode =='batch':
                u = np.zeros(len(tlist), dtype=object)
                _rows = np.array([(N+1)*m for m in range(N)])
                _cols = np.zeros_like(_rows)
                _data = np.ones_like(_rows,dtype=complex)
                psi0 = Qobj(sp.coo_matrix((_data,(_rows,_cols))).tocsr())
                if td_type[1] > 0 or td_type[2] > 0:
                    H2 = []
                    for k in range(len(H)):
                        if isinstance(H[k], list):
                            H2.append([tensor(qeye(N), H[k][0]), H[k][1]])
                        else:
                            H2.append(tensor(qeye(N), H[k]))
                else:
                    H2 = tensor(qeye(N), H)
                output = sesolve(H2, psi0, tlist, [] , args = args, _safe_mode=False, 
                             options=Options(normalize_output=False))
                for k, t in enumerate(tlist):
                    u[k] = sp_reshape(output.states[k].data, (N, N))
                    unit_row_norm(u[k].data, u[k].indptr, u[k].shape[0])
                    u[k] = u[k].T.tocsr()
            else:
                raise Exception('Invalid unitary mode.')
                        

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims
        
        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(sqrt_N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N)
            for n in range(0, N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(sqrt_N,sqrt_N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(sqrt_N,sqrt_N), dtype=complex))
                output = mesolve(H, rho0, tlist, [], [], args, options, _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)
        
        if parallel:
            output = parallel_map(_parallel_mesolve,range(N * N),
                    task_args=(N,H,tlist,c_op_list,args,options),
                    progress_bar=progress_bar, num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n,(N,N))
                rho0 = Qobj(sp.csr_matrix(([1],([row_idx],[col_idx])), shape=(N,N), dtype=complex))
                output = mesolve(H, rho0, tlist, c_op_list, [], args, options, _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        if unitary_mode == 'batch':
            return Qobj(u[-1], dims=dims)
        else:
            return Qobj(u[:, :, 1], dims=dims)
    else:
        if unitary_mode == 'batch':
            return np.array([Qobj(u[k], dims=dims) for k in range(len(tlist))], dtype=object)
        else:
            return np.array([Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))], dtype=object)
Exemple #22
0
def propagator(H,
               t,
               c_op_list=[],
               args={},
               options=None,
               unitary_mode='batch',
               parallel=False,
               progress_bar=None,
               _safe_mode=True,
               **kwargs):
    r"""
    Calculate the propagator U(t) for the density matrix or wave function such
    that :math:`\psi(t) = U(t)\psi(0)` or
    :math:`\rho_{\mathrm vec}(t) = U(t) \rho_{\mathrm vec}(0)`
    where :math:`\rho_{\mathrm vec}` is the vector representation of the
    density matrix.

    Parameters
    ----------
    H : qobj or list
        Hamiltonian as a Qobj instance of a nested list of Qobjs and
        coefficients in the list-string or list-function format for
        time-dependent Hamiltonians (see description in :func:`qutip.mesolve`).

    t : float or array-like
        Time or list of times for which to evaluate the propagator.

    c_op_list : list
        List of qobj collapse operators.

    args : list/array/dictionary
        Parameters to callback functions for time-dependent Hamiltonians and
        collapse operators.

    options : :class:`qutip.Options`
        with options for the ODE solver.

    unitary_mode = str ('batch', 'single')
        Solve all basis vectors simulaneously ('batch') or individually
        ('single').

    parallel : bool {False, True}
        Run the propagator in parallel mode. This will override the
        unitary_mode settings if set to True.

    progress_bar: BaseProgressBar
        Optional instance of BaseProgressBar, or a subclass thereof, for
        showing the progress of the simulation. By default no progress bar
        is used, and if set to True a TextProgressBar will be used.

    Returns
    -------
     a : qobj
        Instance representing the propagator :math:`U(t)`.

    """
    kw = _default_kwargs()
    if 'num_cpus' in kwargs:
        num_cpus = kwargs['num_cpus']
    else:
        num_cpus = kw['num_cpus']

    if progress_bar is None:
        progress_bar = BaseProgressBar()
    elif progress_bar is True:
        progress_bar = TextProgressBar()

    if options is None:
        options = Options()
        options.rhs_reuse = True
        rhs_clear()

    if isinstance(t, (int, float, np.integer, np.floating)):
        tlist = [0, t]
    else:
        tlist = t

    if _safe_mode:
        _solver_safety_check(H, None, c_ops=c_op_list, e_ops=[], args=args)

    td_type = _td_format_check(H, c_op_list, solver='me')

    if isinstance(
            H,
        (types.FunctionType, types.BuiltinFunctionType, functools.partial)):
        H0 = H(0.0, args)
        if unitary_mode == 'batch':
            # batch don't work with function Hamiltonian
            unitary_mode = 'single'
    elif isinstance(H, list):
        H0 = H[0][0] if isinstance(H[0], list) else H[0]
    else:
        H0 = H

    if len(c_op_list) == 0 and H0.isoper:
        # calculate propagator for the wave function

        N = H0.shape[0]
        dims = H0.dims

        if parallel:
            unitary_mode = 'single'
            u = np.zeros([N, N, len(tlist)], dtype=complex)
            output = parallel_map(_parallel_sesolve,
                                  range(N),
                                  task_args=(N, H, tlist, args, options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = output[n].states[k].full().T
        else:
            if unitary_mode == 'single':
                output = sesolve(H,
                                 qeye(dims[0]),
                                 tlist, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                if len(tlist) == 2:
                    return output.states[-1]
                else:
                    return output.states

            elif unitary_mode == 'batch':
                u = np.zeros(len(tlist), dtype=object)
                _rows = np.array([(N + 1) * m for m in range(N)])
                _cols = np.zeros_like(_rows)
                _data = np.ones_like(_rows, dtype=complex)
                psi0 = Qobj(sp.coo_matrix((_data, (_rows, _cols))).tocsr())
                if td_type[1] > 0 or td_type[2] > 0:
                    H2 = []
                    for k in range(len(H)):
                        if isinstance(H[k], list):
                            H2.append([tensor(qeye(N), H[k][0]), H[k][1]])
                        else:
                            H2.append(tensor(qeye(N), H[k]))
                else:
                    H2 = tensor(qeye(N), H)
                options.normalize_output = False
                output = sesolve(H2,
                                 psi0,
                                 tlist, [],
                                 args=args,
                                 options=options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[k] = sp_reshape(output.states[k].data, (N, N))
                    unit_row_norm(u[k].data, u[k].indptr, u[k].shape[0])
                    u[k] = u[k].T.tocsr()

            else:
                raise Exception('Invalid unitary mode.')

    elif len(c_op_list) == 0 and H0.issuper:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        sqrt_N = int(np.sqrt(N))
        dims = H0.dims

        u = np.zeros([N, N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(sqrt_N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            rho0 = qeye(N, N)
            rho0.dims = [[sqrt_N, sqrt_N], [sqrt_N, sqrt_N]]
            output = mesolve(H,
                             psi0,
                             tlist, [],
                             args,
                             options,
                             _safe_mode=False)
            if len(tlist) == 2:
                return output.states[-1]
            else:
                return output.states

    else:
        # calculate the propagator for the vector representation of the
        # density matrix (a superoperator propagator)
        unitary_mode = 'single'
        N = H0.shape[0]
        dims = [H0.dims, H0.dims]

        u = np.zeros([N * N, N * N, len(tlist)], dtype=complex)

        if parallel:
            output = parallel_map(_parallel_mesolve,
                                  range(N * N),
                                  task_args=(N, H, tlist, c_op_list, args,
                                             options),
                                  progress_bar=progress_bar,
                                  num_cpus=num_cpus)
            for n in range(N * N):
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output[n].states[k].full()).T
        else:
            progress_bar.start(N * N)
            for n in range(N * N):
                progress_bar.update(n)
                col_idx, row_idx = np.unravel_index(n, (N, N))
                rho0 = Qobj(
                    sp.csr_matrix(([1], ([row_idx], [col_idx])),
                                  shape=(N, N),
                                  dtype=complex))
                output = mesolve(H,
                                 rho0,
                                 tlist,
                                 c_op_list, [],
                                 args,
                                 options,
                                 _safe_mode=False)
                for k, t in enumerate(tlist):
                    u[:, n, k] = mat2vec(output.states[k].full()).T
            progress_bar.finished()

    if len(tlist) == 2:
        if unitary_mode == 'batch':
            return Qobj(u[-1], dims=dims)
        else:
            return Qobj(u[:, :, 1], dims=dims)
    else:
        if unitary_mode == 'batch':
            return np.array([Qobj(u[k], dims=dims) for k in range(len(tlist))],
                            dtype=object)
        else:
            return np.array(
                [Qobj(u[:, :, k], dims=dims) for k in range(len(tlist))],
                dtype=object)
Exemple #23
0
def _steadystate_power(L, ss_args):
    """
    Inverse power method for steady state solving.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        print('Starting iterative inverse-power method solver...')
    tol = ss_args['tol']
    maxiter = ss_args['maxiter']

    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
    else:
        rhoss.dims = [L.dims[0], 1]
    n = prod(rhoss.shape)
    L = L.data.tocsc() - (1e-15) * sp.eye(n, n, format='csc')
    L.sort_indices()
    orig_nnz = L.nnz

    # start with all ones as RHS
    v = np.ones(n,dtype=complex)

    if ss_args['use_rcm']:
        if settings.debug:
            old_band = sp_bandwidth(L)[0]
            print('Original bandwidth:', old_band)
        perm = reverse_cuthill_mckee(L)
        rev_perm = np.argsort(perm)
        L = sp_permute(L, perm, perm, 'csc')
        v = v[np.ix_(perm,)]
        if settings.debug:
            new_band = sp_bandwidth(L)[0]
            print('RCM bandwidth:', new_band)
            print('Bandwidth reduction factor:', round(old_band/new_band, 2))

    # Get LU factors
    lu = splu(L, permc_spec=ss_args['permc_spec'],
              diag_pivot_thresh=ss_args['diag_pivot_thresh'],
              options=dict(ILU_MILU=ss_args['ILU_MILU']))

    if settings.debug and _scipy_check:
        L_nnz = lu.L.nnz
        U_nnz = lu.U.nnz
        print('L NNZ:', L_nnz, ';', 'U NNZ:', U_nnz)
        print('Fill factor:', (L_nnz+U_nnz)/orig_nnz)

    _power_start = time.time()
    it = 0
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        v = lu.solve(v)
        v = v / la.norm(v, np.inf)
        it += 1
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' +
                        str(maxiter) + ' iterations')
    
    _power_end = time.time()
    ss_args['info']['solution_time'] = _power_end-_power_start
    ss_args['info']['iterations'] = it
    if settings.debug:
        print('Number of iterations:', it)

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm,)]

    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if ss_args['return_info']:
        return rhoss, ss_args['info']
    else:
        return rhoss
Exemple #24
0
def _steadystate_power(L, ss_args):
    """
    Inverse power method for steady state solving.
    """
    ss_args['info'].pop('weight', None)
    if settings.debug:
        logger.debug('Starting iterative inverse-power method solver.')
    tol = ss_args['tol']
    maxiter = ss_args['maxiter']

    use_solver(assumeSortedIndices=True)
    rhoss = Qobj()
    sflag = issuper(L)
    if sflag:
        rhoss.dims = L.dims[0]
    else:
        rhoss.dims = [L.dims[0], 1]
    n = L.shape[0]
    # Build Liouvillian
    if settings.has_mkl and ss_args['method'] == 'power':
        has_mkl = 1
    else:
        has_mkl = 0
    L, perm, perm2, rev_perm, ss_args = _steadystate_power_liouvillian(L, 
                                                ss_args, has_mkl)
    orig_nnz = L.nnz
    # start with all ones as RHS
    v = np.ones(n, dtype=complex)
    if ss_args['use_rcm']:
        v = v[np.ix_(perm2,)]
    
    # Do preconditioning
    if ss_args['M'] is None and ss_args['use_precond'] and \
            ss_args['method'] in ['power-gmres', 
                                'power-lgmres', 'power-bicgstab']:
        ss_args['M'], ss_args = _iterative_precondition(L, int(np.sqrt(n)), ss_args)
        if ss_args['M'] is None:
            warnings.warn("Preconditioning failed. Continuing without.",
                          UserWarning)
    
    ss_iters = {'iter': 0}

    def _iter_count(r):
        ss_iters['iter'] += 1
        return
    
    _power_start = time.time()
    # Get LU factors
    if ss_args['method'] == 'power':
        if settings.has_mkl:
            lu = mkl_splu(L)
        else: 
            lu = splu(L, permc_spec=ss_args['permc_spec'],
              diag_pivot_thresh=ss_args['diag_pivot_thresh'],
              options=dict(ILU_MILU=ss_args['ILU_MILU']))

            if settings.debug and _scipy_check:
                L_nnz = lu.L.nnz
                U_nnz = lu.U.nnz
                logger.debug('L NNZ: %i ; U NNZ: %i' % (L_nnz, U_nnz))
                logger.debug('Fill factor: %f' % ((L_nnz+U_nnz)/orig_nnz))

    it = 0
    _tol = max(ss_args['tol']/10, 1e-15) # Should make this user accessible
    while (la.norm(L * v, np.inf) > tol) and (it < maxiter):
        
        if ss_args['method'] == 'power':
            v = lu.solve(v)
        elif ss_args['method'] == 'power-gmres':
            v, check = gmres(L, v, tol=_tol, M=ss_args['M'],
                                x0=ss_args['x0'], restart=ss_args['restart'],
                                maxiter=ss_args['maxiter'], callback=_iter_count)
        elif ss_args['method'] == 'power-lgmres':
            v, check = lgmres(L, v, tol=_tol, M=ss_args['M'],
                              x0=ss_args['x0'], maxiter=ss_args['maxiter'],
                              callback=_iter_count)
        elif ss_args['method'] == 'power-bicgstab':
            v, check = bicgstab(L, v, tol=_tol, M=ss_args['M'],
                                x0=ss_args['x0'],
                                maxiter=ss_args['maxiter'], callback=_iter_count)
        else:
            raise Exception("Invalid iterative solver method.")
            
        v = v / la.norm(v, np.inf)
        it += 1
    if ss_args['method'] == 'power' and settings.has_mkl:
        lu.delete()
    if it >= maxiter:
        raise Exception('Failed to find steady state after ' +
                        str(maxiter) + ' iterations')
    _power_end = time.time()
    ss_args['info']['solution_time'] = _power_end-_power_start
    ss_args['info']['iterations'] = it
    if ss_args['return_info']:
        ss_args['info']['residual_norm'] = la.norm(L*v)
    if settings.debug:
        logger.debug('Number of iterations: %i' % it)

    if ss_args['use_rcm']:
        v = v[np.ix_(rev_perm,)]

    # normalise according to type of problem
    if sflag:
        trow = sp.eye(rhoss.shape[0], rhoss.shape[0], format='coo')
        trow = sp_reshape(trow, (1, n))
        data = v / sum(trow.dot(v))
    else:
        data = data / la.norm(v)

    data = sp.csr_matrix(vec2mat(data))
    rhoss.data = 0.5 * (data + data.conj().T)
    rhoss.isherm = True
    if ss_args['return_info']:
        return rhoss, ss_args['info']
    else:
        return rhoss