def draw_sphere_zenith(zenith_points, hv_points, root):
    b = Bloch()
    b.point_color = ['m', 'k', 'g', 'b', 'w', 'c', 'y', 'r']
    b.zlabel = ['$z$', '']
    b.point_marker = ['o']
    b.point_size = [30]
    b.frame_width = 1.2
    fig = plt.figure(figsize=(20, 20))
    b.fig = fig

    x = (basis(2, 0) + (1 + 0j) * basis(2, 1)).unit()
    y = (basis(2, 0) + (0 + 1j) * basis(2, 1)).unit()
    z = (basis(2, 0) + (0 + 0j) * basis(2, 1)).unit()
    b.add_states([x, y, z])

    for i in range(len(zenith_points)):
        # Transform xyz to zxy coordinates
        tmp1 = np.array(
            [zenith_points[i][2], zenith_points[i][0], zenith_points[i][1]])
        tmp2 = np.vstack(
            [hv_points[i][:, 2], hv_points[i][:, 0], hv_points[i][:, 1]]).T
        tmp = np.vstack([tmp1, -tmp1, tmp2]).T
        b.add_points(tmp)

    # tmp1 = np.array([zenith_points[-1][2], zenith_points[-1][0], zenith_points[-1][1]])
    # tmp = np.array([tmp1, -tmp1]).T
    # b.add_points(tmp)
    name = os.path.join(root, 'zenith_on_sphere.jpg')
    b.save(name=name)
def draw_consensus_rectified_sphere(hv_points, root):
    b = Bloch()
    b.point_color = ['m', 'k', 'g', 'b', 'w', 'c', 'y', 'r']
    b.zlabel = ['$z$', '']
    b.point_marker = ['o']
    b.point_size = [80]
    b.frame_width = 1.2
    fig = plt.figure(figsize=(20, 20))
    b.fig = fig

    x = (basis(2, 0) + (1 + 0j) * basis(2, 1)).unit()
    y = (basis(2, 0) + (0 + 1j) * basis(2, 1)).unit()
    z = (basis(2, 0) + (0 + 0j) * basis(2, 1)).unit()
    b.add_states([x, y, z])
    for i in range(len(hv_points)):
        # Transform xyz to zxy coordinates
        tmp2 = np.vstack(
            [hv_points[i][:, 2], hv_points[i][:, 0], hv_points[i][:, 1]]).T
        tmp = tmp2.T
        b.add_points(tmp)

    # b.add_points([ 0.99619469809174555, 0.087155742747658166, 0])
    # b.add_points([0.99619469809174555, -0.087155742747658166, 0])
    # b.add_points(tmp)
    name = os.path.join(root, 'consensus_zenith_on_rectified_sphere.jpg')
    b.save(name=name)
def draw_center_hvps_rectified_sphere(hv_points, root):
    b = Bloch()
    b.point_color = ['m', 'k', 'g', 'b', 'w', 'c', 'y', 'r']
    b.zlabel = ['$z$', '']
    b.point_marker = ['o']
    b.point_size = [80]
    b.frame_width = 1.2
    fig = plt.figure(figsize=(20, 20))
    b.fig = fig

    x = (basis(2, 0) + (1 + 0j) * basis(2, 1)).unit()
    y = (basis(2, 0) + (0 + 1j) * basis(2, 1)).unit()
    z = (basis(2, 0) + (0 + 0j) * basis(2, 1)).unit()
    b.add_states([x, y, z])
    for i in range(len(hv_points)):
        # Transform xyz to zxy coordinates
        tmp1 = np.array([hv_points[i][2], hv_points[i][0], hv_points[i][1]])
        tmp2 = np.vstack([tmp1, -tmp1]).T
        tmp = tmp2
        b.add_points(tmp)

    name = os.path.join(root, 'consensus_hvps_center_on_rectified_sphere.jpg')
    b.save(name=name)
    # point2 = np.array([0., 0., 1.])
    #
    #
    # # pitch = np.arctan(point1[2] / point1[1])
    # # roll = - np.arctan(point1[0] / np.sign(point1[1]) * np.hypot(point1[1], point1[2]))
    #
    #
    # ## print(R_pitch(pitch).dot(R_roll(roll).dot(np.array([0, 1, 0]))))
    #
    #
    # hl = np.array([[0., 774.0801861], [1600., 825.23757385], [np.nan, np.nan]])
    # hl_homo = np.array([np.hstack([hl[0] - 800, 800]), np.hstack([hl[1] - 800, 800])])
    #
    #
    # hvps = np.array([[830.73055179,800.6414392],[1158.09074533, 811.10824692]])
    # img = Image.open('/home/zhup/Desktop/Pano/Pano_hl_z_vp/3_im_hl.jpg')
    # draw = ImageDraw.Draw(img)
    # draw.line([tuple(hvps[0]), tuple(hvps[1])], width=6, fill='yellow')
    # img.save(os.path.join(root, 'render_part3.jpg'))

    b = Bloch()
    b.point_color = ['m', 'k', 'g', 'b', 'w', 'c', 'y', 'r']
    b.zlabel = ['$z$', '']
    b.point_marker = ['o']
    b.point_size = [3]
    b.frame_width = 0.5
    fig = plt.figure(figsize=(20, 20))
    b.fig = fig
    name = os.path.join('zenith_on_sphere.jpg')
    b.save(name=name)
@author: wittek
"""
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
from qutip import Bloch
from graphics_utils import initialize_graphics

colors = initialize_graphics()

fig = plt.figure()
axes = Axes3D(fig)
axes.grid = True
axes.axis("off")
axes.set_axis_off()

b=Bloch()

b.fig = fig
b.axes = axes
#b.fig = fig
#b.frame_width=1
b.sphere_color = 'white'
b.sphere_alpha = 0.1
#b.size = [10, 10]
b.make_sphere()

plt.savefig('./bloch_sphere.svg',bbox_inches='tight')
#b.show()
#b.save('bloch_sphere.pdf',format='pdf')