Exemple #1
0
from rackio_AI import RackioAI
from rackio import Rackio

app = Rackio()

RackioAI(app)

df = RackioAI.load_test_data('Leak')
df.info()

df2 = RackioAI.load_test_data('Leak', 'Leak111.tpl')
df2.info()
Exemple #2
0
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from rackio_AI import Preprocessing, RackioAI
from rackio import Rackio

app = Rackio()
RackioAI(app)

"Filename definition where is the data"
os.chdir('../..')
cwd = os.getcwd()
filename = os.path.join(cwd, 'rackio_AI', 'data', 'pkl_files', 'test_data.pkl')

"Load Data to RackioAI"
RackioAI.load(filename)

"Definition of instrument parameters"
error = [0.0025, 0.0025, 0.0025, 0.0025]
repeteability = [0.001, 0.001, 0.001, 0.001]
lower_limit = [0, 0, 400000, 100000]
upper_limit = [500, 500, 1200000, 600000]
dead_band = [0.001, 0.001, 0.001, 0.001]

"Set Options"
RackioAI.synthetic_data.set_options(error=error,
                                    repeteability=repeteability,
                                    lower_limit=lower_limit,
                                    upper_limit=upper_limit,
                                    dead_band=dead_band)
Exemple #3
0
        df = pd.concat(self._df_)

        return df

    @ProgressBar(desc="Reading .pkl files...", unit="file")
    def __read(self, pathname, **pkl_options):
        """
        Read (pkl) file into DataFrame.
        """
        with open(pathname, 'rb') as f:
            _df = pickle.load(f)

        if 'remove_initial_points' in pkl_options:
            _rip = pkl_options['remove_initial_points']

            _df.drop(index=_df.iloc[0:_rip, :].index.tolist(), inplace=True)

        self._df_.append(_df)

        return


if __name__ == "__main__":
    # import doctest

    # doctest.testmod()
    import os
    from rackio_AI import RackioAI, get_directory
    filename = os.path.join(get_directory('Leak'), 'Leak01.tpl')
    df = RackioAI.load(filename)
Exemple #4
0
from rackio import Rackio
from rackio_AI import RackioAI

app = Rackio()

RackioAI(app)

"Rackio"
print(RackioAI.app.__class__.__name__)
print('===================')
"RackioAI"
print(RackioAI.__class__.__name__)
Exemple #5
0
from rackio_AI import RackioAI, Preprocessing
from rackio import Rackio

app = Rackio()

RackioAI(app)

preprocess1 = Preprocessing(name='Preprocess1',
                            description='preprocess for data',
                            problem_type='regression')

preprocess2 = Preprocessing(name='Preprocess2',
                            description='preprocess for data',
                            problem_type='classification')

RackioAI.append_preprocessing_model(preprocess1)

RackioAI.append_preprocessing_model(preprocess2)

print(RackioAI.summary())
Exemple #6
0
import os
from rackio_AI import RackioAI
from rackio import Rackio

app = Rackio()

RackioAI(app)

os.chdir('../..')
cwd = os.getcwd()
filename = os.path.join(cwd, 'rackio_AI', 'data', 'Leak', 'Leak112.tpl')

RackioAI.load(filename)

df = RackioAI.reader.tpl.to('dataframe')
print(' ')
print(
    '----------------------------------------------------------------------------------------'
)
print('DATAFRAME BEFORE PERSISTING')
print(
    '----------------------------------------------------------------------------------------'
)
print(' ')
df.info()

filename = 'test'
# Save pkl object
RackioAI.save_obj(df, filename)

# Load pkl object
Exemple #7
0
import os
from rackio_AI import RackioAI
from rackio import Rackio

app = Rackio()

RackioAI(app)

base_path = os.path.join('..', 'data')

filename = os.path.join(base_path, 'Leak')

RackioAI.load(filename)

url_to_save = os.path.join(base_path, 'name.csv')
RackioAI.reader.tpl.to('csv', filename=url_to_save)
Exemple #8
0
import os
import pandas as pd
from rackio_AI import RackioAI
from rackio import Rackio

app = Rackio()

RackioAI(app)

"Data load"
os.chdir('../..')
cwd = os.getcwd()
filename = os.path.join(cwd, 'rackio_AI', 'data', 'pkl_files', 'test_data.pkl')

RackioAI.load(filename)

variable_names = RackioAI.data.columns.to_list()

"Definition of instrument parameters"
error = [0.0025, 0.0025, 0.0025, 0.0025]
repeteability = [0.001, 0.001, 0.001, 0.001]
lower_limit = [0, 0, 400000, 100000]
upper_limit = [500, 500, 1200000, 600000]
dead_band = [0.001, 0.001, 0.001, 0.001]

"Set Options"
RackioAI.synthetic_data.set_options(error=error,
                                    repeteability=repeteability,
                                    lower_limit=lower_limit,
                                    upper_limit=upper_limit,
                                    dead_band=dead_band)
Exemple #9
0
import os
from rackio_AI import RackioAI
from rackio import Rackio

app = Rackio()

RackioAI(app)

filename = os.path.join('..', 'data')

data = RackioAI.load(filename)

print(data)