def test_stage_post_exec():

    global p1
    
    p1.name = 'p1'

    s = Stage()
    s.name = 's1'

    for t in range(NUM_TASKS):
        s.add_tasks(create_single_task())

    s.post_exec = condition

    p1.add_stages(s)

    res_dict = {

            'resource': 'local.localhost',
            'walltime': 30,
            'cpus': 1,
    }

    os.environ['RADICAL_PILOT_DBURL'] = MLAB
    appman = AppManager(rts='radical.pilot', hostname=hostname, port=port)
    appman.resource_desc = res_dict
    appman.workflow = [p1]
    appman.run()
Exemple #2
0
    def generate_machine_learning_stage(self) -> Stage:
        stage = Stage()
        stage.name = self.MACHINE_LEARNING_STAGE_NAME
        cfg = self.cfg.machine_learning_stage
        stage_api = self.api.machine_learning_stage

        task_idx = 0
        output_path = stage_api.task_dir(self.stage_idx, task_idx, mkdir=True)
        assert output_path is not None

        # Update base parameters
        cfg.task_config.experiment_directory = self.cfg.experiment_directory
        cfg.task_config.stage_idx = self.stage_idx
        cfg.task_config.task_idx = task_idx
        cfg.task_config.node_local_path = self.cfg.node_local_path
        cfg.task_config.output_path = output_path
        cfg.task_config.model_tag = stage_api.unique_name(output_path)
        if self.stage_idx > 0:
            # Machine learning should use model selection API
            cfg.task_config.init_weights_path = None

        # Write yaml configuration
        cfg_path = stage_api.config_path(self.stage_idx, task_idx)
        cfg.task_config.dump_yaml(cfg_path)
        task = generate_task(cfg)
        task.arguments += ["-c", cfg_path.as_posix()]
        stage.add_tasks(task)

        return stage
def generate_pipeline():

    global CUR_TASKS, CUR_CORES, duration, MAX_NEW_STAGE

    def func_condition():

        global CUR_NEW_STAGE, MAX_NEW_STAGE

        if CUR_NEW_STAGE < MAX_NEW_STAGE:
            return True

        return False

    def func_on_true():

        global CUR_NEW_STAGE
        CUR_NEW_STAGE += 1

        for t in p.stages[CUR_NEW_STAGE].tasks:
            cores = randint(1,16)
            t.arguments = ['-c', str(cores), '-t', str(duration)]

    def func_on_false():
        print 'Done'

    # Create a Pipeline object
    p = Pipeline()

    for s in range(MAX_NEW_STAGE+1):

        # Create a Stage object
        s1 = Stage()

        for i in range(CUR_TASKS):

            t1 = Task()
            t1.pre_exec = ['export PATH=/u/sciteam/balasubr/modules/stress-ng-0.09.34:$PATH']
            t1.executable = ['stress-ng']
            t1.arguments = [ '-c', str(CUR_CORES), '-t', str(duration)]
            t1.cpu_reqs = {
                            'processes': 1,
                            'process_type': '',
                            'threads_per_process': CUR_CORES,
                            'thread_type': ''
                        }

            # Add the Task to the Stage
            s1.add_tasks(t1)

        # Add post-exec to the Stage
        s1.post_exec = {
                           'condition': func_condition,
                           'on_true': func_on_true,
                           'on_false': func_on_false
                       }

        # Add Stage to the Pipeline
        p.add_stages(s1)

    return p
def generate_pipeline(name, stages):

    # Create a Pipeline object
    p = Pipeline()
    p.name = name


    for s_cnt in range(stages):

        # Create a Stage object
        s = Stage()
        s.name = 'Stage %s'%s_cnt

        for t_cnt in range(5):

            # Create a Task object
            t = Task()
            t.name = 'my-task'        # Assign a name to the task (optional)
            t.executable = '/bin/echo'   # Assign executable to the task
            # Assign arguments for the task executable
            t.arguments = ['I am task %s in %s in %s'%(t_cnt, s_cnt, name)]

            # Add the Task to the Stage
            s.add_tasks(t)

        # Add Stage to the Pipeline
        p.add_stages(s)

    return p
    def describe_MD_stages():

        # Docking stage
        s1 = Stage()
        s1.name = 'Docking.%d' % CUR_NEW_STAGE

        # Docking task
        t1 = Task()
        t1.executable = ['sleep']
        t1.arguments = ['3']

        # Add the Docking task to the Docking Stage
        s1.add_tasks(t1)

        # MD stage
        s2 = Stage()
        s2.name = 'Simulation.%d' % CUR_NEW_STAGE

        # Each Task() is an OpenMM executable that will run on a single GPU.
        # Set sleep time for local testing
        for i in range(6):
            t2 = Task()
            t2.executable = ['sleep']
            t2.arguments = ['5']

            # Add the MD task to the Docking Stage
            s2.add_tasks(t2)

        # Add post-exec to the Stage
        s2.post_exec = func_condition

        return [s1, s2]
Exemple #6
0
 def add_ex_stg(rid, cycle):
     #ex stg here
     ex_tsk = Task()
     ex_stg = Stage()
     ex_tsk.name = 'extsk-{replica}-{cycle}'.format(replica=rid, cycle=cycle)
     for rid in range(len(waiting_replicas)):
         ex_tsk.link_input_data += ['%s/mdinfo-{replica}-{cycle}'.format(replica=rid, cycle=self.cycle)%replica_sandbox]
        
     ex_tsk.arguments = ['t_ex_gibbs.py', len(waiting_replicas)] #This needs to be fixed
     ex_tsk.executable = ['python']
     ex_tsk.cpu_reqs = {
                    'processes': 1,
                    'process_type': '',
                    'threads_per_process': 1,
                    'thread_type': None
                     }
     ex_tsk.pre_exec   = ['export dummy_variable=19']
      
     ex_stg.add_tasks(ex_tsk)
     ex_stg.post_exec = {
                     'condition': post_ex,
                     'on_true': terminate_replicas,
                     'on_false': continue_md
                   } 
     return ex_stg
        def add_md_stg(rid,cycle):
            #md stg h
            md_tsk = Task()
            md_stg = Stage()
            md_tsk.name = 'mdtsk-{replica}-{cycle}'.format(replica=rid, cycle=cycle)
            md_tsk.link_input_data += ['%s/inpcrd' %replica_sandbox, 
                                   '%s/prmtop' %replica_sandbox, 
                                   '%s/mdin-{replica}-{cycle}'.format(replica=rid, cycle=0) %replica_sandbox]
            md_tsk.arguments = ['-O', 
                            '-i',   'mdin-{replica}-{cycle}'.format(replica=rid, cycle=0), 
                            '-p',   'prmtop', 
                            '-c',   'inpcrd', 
                            '-o',   'out',
                            '-r',   '%s/restrt-{replica}-{cycle}'.format(replica=rid, cycle=cycle) %replica_sandbox,
                            '-x',   'mdcrd',
                            '-inf', '%s/mdinfo-{replica}-{cycle}'.format(replica=rid, cycle=cycle) %replica_sandbox]
            md_tsk.executable = ['/home/scm177/mantel/AMBER/amber14/bin/sander']
            md_tsk.cpu_reqs = {
                            'processes': replica_cores,
                            'process_type': '',
                            'threads_per_process': 1,
                            'thread_type': None
                               }
            md_tsk.pre_exec   = ['export dummy_variable=19', 'echo $SHARED']
         
            md_stg.add_tasks(md_tsk)
            md_stg.post_exec = {
                            'condition': md_post,
                            'on_true': suspend,
                            'on_false': exchange_stg
                          } 

            return md_stg
Exemple #8
0
 def post_stage():
     if (not os.path.exists(f'{run_dir}/aggregator/stop.aggregator')):
         nstages = len(p.stages)
         s = Stage()
         s.name = f"{nstages}"
         t = Task()
         t.cpu_reqs = {
             'processes': 1,
             'process_type': None,
             'threads_per_process': 4,
             'thread_type': 'OpenMP'
         }
         t.gpu_reqs = {
             'processes': 0,
             'process_type': None,
             'threads_per_process': 0,
             'thread_type': None
         }
         t.name = f" {i}_{nstages} "
         t.executable = PYTHON
         t.arguments = [
             f'{current_dir}/simulation.py',
             f'{run_dir}/simulations/all/{i}_{nstages}', ADIOS_XML
         ]
         subprocess.getstatusoutput(
             f'ln -s  {run_dir}/simulations/all/{i}_{nstages} {run_dir}/simulations/new/{i}_{nstages}'
         )
         s.add_tasks(t)
         s.post_exec = post_stage
         p.add_stages(s)
Exemple #9
0
    def test_stage_task_addition(self, mocked_init):

        s = Stage()
        s._p_pipeline = {'uid': None, 'name': None}
        s._uid = 'stage.0000'
        s._name = None
        s._tasks = set()
        t1 = mock.MagicMock(spec=Task)
        t2 = mock.MagicMock(spec=Task)
        s.add_tasks(set([t1, t2]))

        self.assertIsInstance(s.tasks, set)
        self.assertEqual(s._task_count, 2)
        self.assertIn(t1, s.tasks)
        self.assertIn(t2, s.tasks)

        s = Stage()
        s._uid = 'stage.0000'
        s._name = None
        s._p_pipeline = {'uid': None, 'name': None}
        s._tasks = set()
        t1 = mock.MagicMock(spec=Task)
        t2 = mock.MagicMock(spec=Task)
        s.add_tasks([t1, t2])

        self.assertIsInstance(s.tasks, set)
        self.assertEqual(s._task_count, 2)
        self.assertIn(t1, s.tasks)
        self.assertIn(t2, s.tasks)
    def generate_ml_stage(self) -> Stage:
        stage = Stage()
        stage.name = "learning"
        cfg = self.cfg.ml_stage

        task = Task()
        task.cpu_reqs = cfg.cpu_reqs.dict()
        task.gpu_reqs = cfg.gpu_reqs.dict()
        task.pre_exec = cfg.pre_exec
        task.executable = cfg.executable
        task.arguments = cfg.arguments

        # Update base parameters
        cfg.run_config.input_path = self.aggregated_data_path(
            self.cur_iteration)
        cfg.run_config.output_path = self.model_path(self.cur_iteration)
        if self.cur_iteration > 0:
            cfg.run_config.init_weights_path = self.latest_ml_checkpoint_path(
                self.cur_iteration - 1)

        cfg_path = self.experiment_dirs["ml_runs"].joinpath(
            f"ml_{self.cur_iteration:03d}.yaml")
        cfg.run_config.dump_yaml(cfg_path)

        task.arguments += ["-c", cfg_path]
        stage.add_tasks(task)

        return stage
Exemple #11
0
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s1 = Stage()

    # Create a Task object which creates a file named 'output.txt' of size 1 MB
    for x in range(10):
        t1 = Task()
        t1.executable = 'cat'
        t1.arguments = ['file1.txt', 'file2.txt', '>', 'output.txt']
        t1.copy_input_data = ['$SHARED/file1.txt', '$SHARED/file2.txt']
        t1.download_output_data = [
            'output.txt > %s/output_%s.txt' % (cur_dir, x + 1)
        ]

        # Add the Task to the Stage
        s1.add_tasks(t1)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
Exemple #12
0
def test_amgr_synchronizer():

    amgr = Amgr(hostname=host, port=port, username=username, password=password)
    amgr._setup_mqs()

    p = Pipeline()
    s = Stage()

    # Create and add 10 tasks to the stage
    for cnt in range(10):

        t = Task()
        t.executable = 'some-executable-%s' % cnt

        s.add_tasks(t)

    p.add_stages(s)
    p._validate()

    amgr.workflow = [p]

    sid  = 'test.0016'
    rmgr = BaseRmgr({}, sid, None, {})
    tmgr = BaseTmgr(sid=sid,
                    pending_queue=['pending-1'],
                    completed_queue=['completed-1'],
                    rmgr=rmgr,
                    rmq_conn_params=amgr._rmq_conn_params,
                    rts=None)

    amgr._rmgr         = rmgr
    rmgr._task_manager = tmgr

    for t in p.stages[0].tasks:
        assert t.state == states.INITIAL

    assert p.stages[0].state == states.INITIAL
    assert p.state           == states.INITIAL

    # Start the synchronizer method in a thread
    amgr._terminate_sync = mt.Event()
    sync_thread = mt.Thread(target=amgr._synchronizer,
                            name='synchronizer-thread')
    sync_thread.start()

    # Start the synchronizer method in a thread
    proc = mp.Process(target=func_for_synchronizer_test, name='temp-proc',
                      args=(amgr._sid, p, tmgr))

    proc.start()
    proc.join()


    # Wait for AppManager to finish the message exchange
    # no need to set *)terminate_sync* but a timeout instead
    # amgr._terminate_sync.set()
    sync_thread.join(15)

    for t in p.stages[0].tasks:
        assert t.state == states.COMPLETED
Exemple #13
0
    def test_stage_exceptions(self, mocked_generate_id, l, i, b, se):
        """
        ***Purpose***: Test if correct exceptions are raised when attributes are
        assigned unacceptable values.
        """

        s = Stage()

        data_type = [l, i, b, se]

        for data in data_type:

            if not isinstance(data, str):
                with self.assertRaises(TypeError):
                    s.name = data

            # if isinstance(data,str):
            #     with self.assertRaises(ValueError):
            #         s.name = data

            with self.assertRaises(TypeError):
                s.tasks = data

            with self.assertRaises(TypeError):
                s.add_tasks(data)
Exemple #14
0
def test_wfp_check_processor():

    p = Pipeline()
    s = Stage()
    t = Task()

    t.executable = '/bin/date'
    s.add_tasks(t)
    p.add_stages(s)

    amgr = Amgr(hostname=hostname, port=port)
    amgr._setup_mqs()

    wfp = WFprocessor(sid=amgr._sid,
                      workflow=[p],
                      pending_queue=amgr._pending_queue,
                      completed_queue=amgr._completed_queue,
                      rmq_conn_params=amgr._rmq_conn_params,
                      resubmit_failed=False)

    wfp.start_processor()
    assert wfp.check_processor()

    wfp.terminate_processor()
    assert not wfp.check_processor()
    def generate_aggregating_stage(self) -> Stage:
        stage = Stage()
        stage.name = "aggregating"
        cfg = self.cfg.aggregation_stage

        # Aggregation task
        task = Task()

        task.cpu_reqs = cfg.cpu_reqs.dict()
        task.pre_exec = cfg.pre_exec
        task.executable = cfg.executable
        task.arguments = cfg.arguments

        # Update base parameters
        cfg.run_config.experiment_directory = self.cfg.experiment_directory
        cfg.run_config.output_path = self.aggregated_data_path(
            self.cur_iteration)

        cfg_path = self.experiment_dirs["aggregation_runs"].joinpath(
            f"aggregation_{self.cur_iteration:03d}.yaml")
        cfg.run_config.dump_yaml(cfg_path)

        task.arguments += ["-c", cfg_path]
        stage.add_tasks(task)

        return stage
Exemple #16
0
def test_wfp_start_processor():

    p = Pipeline()
    s = Stage()
    t = Task()
    t.executable = ['/bin/date']
    s.add_tasks(t)
    p.add_stages(s)

    amgr = Amgr(hostname=hostname, port=port)
    amgr._setup_mqs()

    wfp = WFprocessor(sid=amgr._sid,
                      workflow=[p],
                      pending_queue=amgr._pending_queue,
                      completed_queue=amgr._completed_queue,
                      mq_hostname=amgr._mq_hostname,
                      port=amgr._port,
                      resubmit_failed=False)

    assert wfp.start_processor()
    assert not wfp._enqueue_thread
    assert not wfp._dequeue_thread
    assert not wfp._enqueue_thread_terminate.is_set()
    assert not wfp._dequeue_thread_terminate.is_set()
    assert not wfp._wfp_terminate.is_set()
    assert wfp._wfp_process.is_alive()

    wfp._wfp_terminate.set()
    wfp._wfp_process.join()
Exemple #17
0
    def generate_agent_stage(self) -> Stage:
        stage = Stage()
        stage.name = self.AGENT_STAGE_NAME
        cfg = self.cfg.agent_stage
        stage_api = self.api.agent_stage

        task_idx = 0
        output_path = stage_api.task_dir(self.stage_idx, task_idx, mkdir=True)
        assert output_path is not None

        # Update base parameters
        cfg.task_config.experiment_directory = self.cfg.experiment_directory
        cfg.task_config.stage_idx = self.stage_idx
        cfg.task_config.task_idx = task_idx
        cfg.task_config.node_local_path = self.cfg.node_local_path
        cfg.task_config.output_path = output_path

        # Write yaml configuration
        cfg_path = stage_api.config_path(self.stage_idx, task_idx)
        cfg.task_config.dump_yaml(cfg_path)
        task = generate_task(cfg)
        task.arguments += ["-c", cfg_path.as_posix()]
        stage.add_tasks(task)

        return stage
def test_wfp_check_processor():

    p = Pipeline()
    s = Stage()
    t = Task()
    t.executable = ['/bin/date']
    s.add_tasks(t)
    p.add_stages(s)

    amgr = Amgr(hostname=hostname, port=port)
    amgr._setup_mqs()

    wfp = WFprocessor(sid=amgr._sid,
                      workflow=[p],
                      pending_queue=amgr._pending_queue,
                      completed_queue=amgr._completed_queue,
                      mq_hostname=amgr._mq_hostname,
                      port=amgr._port,
                      resubmit_failed=False)

    wfp.start_processor()
    assert wfp.check_processor()

    wfp.terminate_processor()
    assert not wfp.check_processor()
Exemple #19
0
    def generate_aggregating_task(self): 
        """ 
        Function to concatenate the MD trajectory (h5 contact map) 
        """ 
        p = Pipeline() 
        p.name = 'aggragating' 
        s2 = Stage()
        s2.name = 'aggregating'

        # Aggregation task
        t2 = Task()
        # https://github.com/radical-collaboration/hyperspace/blob/MD/microscope/experiments/MD_to_CVAE/MD_to_CVAE.py
        t2.pre_exec = [] 
        t2.pre_exec += ['. /sw/summit/python/2.7/anaconda2/5.3.0/etc/profile.d/conda.sh']
        t2.pre_exec += ['conda activate %s' % conda_path] 
        t2.pre_exec += ['cd %s' % agg_path]
        t2.executable = ['%s/bin/python' % conda_path]  # MD_to_CVAE.py
        t2.arguments = [
                '%s/MD_to_CVAE.py' % agg_path, 
                '--sim_path', md_path, 
                '--train_frames', 100000]

        # assign hardware the task 
        t2.cpu_reqs = {
                'processes': 1,
                'process_type': None,
                'threads_per_process': 4,
                'thread_type': 'OpenMP'
                }
        # Add the aggregation task to the aggreagating stage
        s2.add_tasks(t2)
        p.add_stages(s2) 
        return p
Exemple #20
0
    def func_on_true():

        global CUR_NEW_STAGE, CUR_TASKS, CUR_CORES, duration

        CUR_NEW_STAGE += 1

        s = Stage()

        for i in range(CUR_TASKS):
            t = Task()
            t.pre_exec = [
                'export PATH=/u/sciteam/balasubr/modules/stress-ng-0.09.34:$PATH'
            ]
            t.executable = ['stress-ng']
            t.arguments = ['-c', str(CUR_CORES), '-t', str(duration)]
            t.cpu_reqs = {
                'processes': 1,
                'process_type': '',
                'threads_per_process': CUR_CORES,
                'thread_type': ''
            }

            # Add the Task to the Stage
            s.add_tasks(t)

        # Add post-exec to the Stage
        s.post_exec = {
            'condition': func_condition,
            'on_true': func_on_true,
            'on_false': func_on_false
        }

        p.add_stages(s)
Exemple #21
0
    def generate_aggregating_stage():
        """ 
        Function to concatenate the MD trajectory (h5 contact map) 
        """
        s2 = Stage()
        s2.name = 'aggregating'

        # Aggregation task
        t2 = Task()
        # https://github.com/radical-collaboration/hyperspace/blob/MD/microscope/experiments/MD_to_CVAE/MD_to_CVAE.py
        t2.pre_exec = []
        #t2.pre_exec += ['. /sw/summit/python/2.7/anaconda2/5.3.0/etc/profile.d/conda.sh']
        #t2.pre_exec += ['conda activate %s' % conda_path]
        t2.pre_exec += ['module unload python']
        t2.pre_exec += ['module load ibm-wml-ce']
        t2.pre_exec += ['cd %s' % agg_path]
        #t2.executable = ['%s/bin/python' % conda_path]  # MD_to_CVAE.py
        t2.executable = [
            '/sw/summit/ibm-wml-ce/anaconda-base/envs/ibm-wml-ce-1.7.0-2/bin/python'
        ]
        t2.arguments = ['%s/MD_to_CVAE.py' % agg_path, '--sim_path', md_path]

        # Add the aggregation task to the aggreagating stage
        s2.add_tasks(t2)
        return s2
Exemple #22
0
def test_stage_post_exec():

    global p1

    p1.name = 'p1'

    s = Stage()
    s.name = 's1'

    for t in range(NUM_TASKS):
        s.add_tasks(create_single_task())

    s.post_exec = {
        'condition': condition,
        'on_true': on_true,
        'on_false': on_false
    }

    p1.add_stages(s)

    res_dict = {
        'resource': 'local.localhost',
        'walltime': 30,
        'cpus': 1,
    }

    os.environ['RADICAL_PILOT_DBURL'] = MLAB
    appman = AppManager(rts='radical.pilot', hostname=hostname, port=port)
    appman.resource_desc = res_dict
    appman.workflow = [p1]
    appman.run()
    def generate_outlier_detection_stage(self) -> Stage:
        stage = Stage()
        stage.name = "outlier_detection"
        cfg = self.cfg.od_stage

        task = Task()
        task.cpu_reqs = cfg.cpu_reqs.dict()
        task.gpu_reqs = cfg.gpu_reqs.dict()
        task.pre_exec = cfg.pre_exec
        task.executable = cfg.executable
        task.arguments = cfg.arguments

        self.outlier_pdbs_path(self.cur_iteration).mkdir()

        # Update base parameters
        cfg.run_config.experiment_directory = self.cfg.experiment_directory
        cfg.run_config.input_path = self.aggregated_data_path(
            self.cur_iteration)
        cfg.run_config.output_path = self.outlier_pdbs_path(self.cur_iteration)
        cfg.run_config.weights_path = self.latest_ml_checkpoint_path(
            self.cur_iteration)
        cfg.run_config.restart_points_path = self.restart_points_path(
            self.cur_iteration)

        cfg_path = self.experiment_dirs["od_runs"].joinpath(
            f"od_{self.cur_iteration:03d}.yaml")
        cfg.run_config.dump_yaml(cfg_path)

        task.arguments += ["-c", cfg_path]
        stage.add_tasks(task)

        return stage
def test_stage_task_addition():

    s = Stage()
    t1 = Task()
    t1.executable = ['/bin/date']
    t2 = Task()
    t2.executable = ['/bin/date']
    s.add_tasks(set([t1, t2]))

    assert type(s.tasks) == set
    assert s._task_count == 2
    assert t1 in s.tasks
    assert t2 in s.tasks

    s = Stage()
    t1 = Task()
    t1.executable = ['/bin/date']
    t2 = Task()
    t2.executable = ['/bin/date']
    s.add_tasks([t1, t2])

    assert type(s.tasks) == set
    assert s._task_count == 2
    assert t1 in s.tasks
    assert t2 in s.tasks
Exemple #25
0
    def generate_aggregating_stage():
        """ 
        Function to concatenate the MD trajectory (h5 contact map) 
        """
        s2 = Stage()
        s2.name = 'aggregating'

        # Aggregation task
        t2 = Task()
        # https://github.com/radical-collaboration/hyperspace/blob/MD/microscope/experiments/MD_to_CVAE/MD_to_CVAE.py
        t2.pre_exec = []

        t2.pre_exec += [
            '. /sw/summit/python/2.7/anaconda2/5.3.0/etc/profile.d/conda.sh'
        ]
        t2.pre_exec += ['conda activate rp.copy']
        t2.pre_exec += [
            'cd /gpfs/alpine/bip179/scratch/hrlee/hyperspace/microscope/experiments/MD_to_CVAE'
        ]
        t2.executable = ['/ccs/home/hrlee/.conda/envs/rp.copy/bin/python'
                         ]  # MD_to_CVAE.py
        t2.arguments = [
            '/gpfs/alpine/bip179/scratch/hrlee/hyperspace/microscope/experiments/MD_to_CVAE/MD_to_CVAE.py',
            '-f',
            '/gpfs/alpine/bip179/scratch/hrlee/hyperspace/microscope/experiments/MD_exps/fs-pep'
        ]

        # Add the aggregation task to the aggreagating stage
        s2.add_tasks(t2)
        return s2
Exemple #26
0
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()
    p.name = 'p1'

    # Create a Stage object
    s1 = Stage()
    s1.name = 's1'
    s1_task_uids = []

    for cnt in range(128):

        # Create a Task object
        t1 = Task()
        t1.name = 't%s' % (cnt + 1)
        # to make a python script executable:
        # 1) add to first line "shebang": #!/usr/bin/env python
        # 2) chmod +x SerialCode.py
        # The executable always has to be in the Target Machine
        t1.executable = '~/SerialCode.py'

        # Add the Task to the Stage
        s1.add_tasks(t1)
        s1_task_uids.append(t1.name)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
Exemple #27
0
def test_wfp_initialization(s, b, l):

    p  = Pipeline()
    stage = Stage()
    t  = Task()

    t.executable = '/bin/date'
    stage.add_tasks(t)
    p.add_stages(stage)
    rmq_conn_params = pika.ConnectionParameters(host=hostname, port=port)

    wfp = WFprocessor(sid='rp.session.local.0000',
                      workflow=set([p]),
                      pending_queue=['pending'],
                      completed_queue=['completed'],
                      rmq_conn_params=rmq_conn_params,
                      resubmit_failed=True)

    assert len(wfp._uid.split('.')) == 2
    assert 'wfprocessor'            == wfp._uid.split('.')[0]
    assert wfp._pending_queue       == ['pending']
    assert wfp._completed_queue     == ['completed']
    assert wfp._rmq_conn_params     == rmq_conn_params
    assert wfp._wfp_process         is None
    assert wfp._workflow            == set([p])

    if not isinstance(s, str):
        wfp = WFprocessor(sid=s,
                          workflow=set([p]),
                          pending_queue=l,
                          completed_queue=l,
                          rmq_conn_params=rmq_conn_params,
                          resubmit_failed=b)
Exemple #28
0
def generate_pipeline(name, stages):

    # Create a Pipeline object
    p = Pipeline()
    p.name = name

    for s_cnt in range(stages):

        # Create a Stage object
        s = Stage()
        s.name = 'Stage %s' % s_cnt

        for t_cnt in range(5):

            # Create a Task object
            t = Task()
            t.name = 'my-task'  # Assign a name to the task (optional)
            t.executable = '/bin/echo'  # Assign executable to the task
            # Assign arguments for the task executable
            t.arguments = ['I am task %s in %s in %s' % (t_cnt, s_cnt, name)]

            # Add the Task to the Stage
            s.add_tasks(t)

        # Add Stage to the Pipeline
        p.add_stages(s)

    return p
Exemple #29
0
def test_stage_task_addition():

    s = Stage()
    t1 = Task()
    t1.executable = '/bin/date'
    t2 = Task()
    t2.executable = '/bin/date'
    s.add_tasks(set([t1, t2]))

    assert type(s.tasks) == set
    assert s._task_count == 2
    assert t1 in s.tasks
    assert t2 in s.tasks

    s = Stage()
    t1 = Task()
    t1.executable = '/bin/date'
    t2 = Task()
    t2.executable = '/bin/date'
    s.add_tasks([t1, t2])

    assert type(s.tasks) == set
    assert s._task_count == 2
    assert t1 in s.tasks
    assert t2 in s.tasks
Exemple #30
0
def generate_pipeline(nid):

    p       = Pipeline()
    s1      = Stage()
    s2      = Stage()
    t1      = Task()

    p.name  = 'p%s' % nid
    s1.name = 's1'
    s2.name = 's2'
    t1.name = 't1'

    t1.executable = '/bin/echo'
    t1.arguments  = ['hello']

    s1.add_tasks(t1)
    p.add_stages(s1)

    for cnt in range(10):

        tn            = Task()
        tn.name       = 't%s' % (cnt + 1)
        tn.executable = '/bin/echo'
        tn.arguments  = ['world']

        # Copy data from the task in first stage to the current task's location
        tn.copy_input_data = ['$Pipeline_%s_Stage_%s_Task_%s/output.txt'
                              % (p.name, s1.name, t1.name)]
        s2.add_tasks(tn)

    p.add_stages(s2)

    return p
Exemple #31
0
def create_inversion_dict_stage(cmt_file_db, param_path, task_counter):
    """Creates stage for the creation of the inversion files. This stage is
    tiny, but required before the actual inversion.

    :param cmt_file_db:
    :param param_path:
    :param task_counter:
    :return:
    """

    # Get database parameter path
    databaseparam_path = os.path.join(param_path,
                                      "Database/DatabaseParameters.yml")

    # Load Parameters
    DB_params = read_yaml_file(databaseparam_path)

    # Earthquake specific database parameters: Dir and Cid
    Cdir, Cid = get_Centry_path(DB_params["databasedir"], cmt_file_db)

    # Function
    inv_dict_func = os.path.join(bin_path, "write_inversion_dicts.py")

    # Create Process Paths Stage (CPP)
    # Create a Stage object
    inv_dict_stage = Stage()
    inv_dict_stage.name = "Creating"

    # Create Task
    inv_dict_task = Task()

    # This way the task gets the name of the path file
    inv_dict_task.name = "Inversion-Dictionaries"

    inv_dict_task.pre_exec = [  # Conda activate
        DB_params["conda-activate"]
    ]

    inv_dict_task.executable = [DB_params["bin-python"]]  # Assign exec
    # to the task

    inv_dict_task.arguments = [
        inv_dict_func, "-f", cmt_file_db, "-p", param_path
    ]

    # In the future maybe to database dir as a total log?
    inv_dict_task.stdout = os.path.join(
        "%s" % Cdir, "logs", "stdout.pipeline_%s.task_%s.%s" %
        (Cid, str(task_counter).zfill(4), inv_dict_task.name))

    inv_dict_task.stderr = os.path.join(
        "%s" % Cdir, "logs", "stderr.pipeline_%s.task_%s.%s" %
        (Cid, str(task_counter).zfill(4), inv_dict_task.name))

    inv_dict_stage.add_tasks(inv_dict_task)

    task_counter += 1

    return inv_dict_stage, task_counter
    def generate_stage(self):
        s = Stage()
        s.name = self.name
        s.add_tasks(
            {self.generate_task(**x)
             for x in self._ensemble_product()})

        return s
Exemple #33
0
def main():

    cmd = "{0} 'ls {1}'".format(ssh, dir_)
    p = Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE)
    out, _ = p.communicate()

    out = out.decode('utf-8').strip().split(linesep)

    fullpaths = [op.join(dir_, p) for p in out]
    print(fullpaths)

    # Start radical entk pipeline

    p = Pipeline()

    for i in range(iterations):

        s = Stage()

        for fp in fullpaths:

            t = Task()
            t.name = 'Incrementation {}'.format(i)
            t.pre_exec = [
                'source /home/vhayot/miniconda3/etc/profile.d/conda.sh',
                'conda activate radenv'
            ]
            t.executable = 'python /home/vhayot/inc.py'

            if i == 0:
                t.arguments = [fp, out_dir, i]
            else:
                # Note: assuming all data is accessible through shared dir
                # radical entk functions without sharedfs, however
                t.arguments = [
                    op.join(out_dir,
                            "it-{0}-{1}".format(i - 1, op.basename(fp))),
                    out_dir, i
                ]

            s.add_tasks(t)

        # Create a new stage everytime there's a dependency
        p.add_stages(s)

    appman = AppManager(hostname=hostname, port=port)

    appman.resource_desc = {
        'resource': 'xsede.bridges',
        'walltime': 20,
        'cpus': 5,
        'project': 'mc3bggp',
        'schema': 'gsissh'
    }

    appman.workflow = set([p])

    appman.run()
Exemple #34
0
def test_wfp_workflow_incomplete():

    p = Pipeline()
    s = Stage()
    t = Task()
    t.executable = ['/bin/date']
    s.add_tasks(t)
    p.add_stages(s)

    amgr = Amgr(hostname=hostname, port=port)
    amgr._setup_mqs()

    wfp = WFprocessor(sid=amgr._sid,
                      workflow=[p],
                      pending_queue=amgr._pending_queue,
                      completed_queue=amgr._completed_queue,
                      mq_hostname=amgr._mq_hostname,
                      port=amgr._port,
                      resubmit_failed=False)

    wfp._initialize_workflow()

    assert wfp.workflow_incomplete()

    amgr.workflow = [p]
    profiler = ru.Profiler(name='radical.entk.temp')

    p.stages[0].state == states.SCHEDULING
    p.state == states.SCHEDULED
    for t in p.stages[0].tasks:
        t.state = states.COMPLETED

    import json
    import pika

    task_as_dict = json.dumps(t.to_dict())
    mq_connection = pika.BlockingConnection(
        pika.ConnectionParameters(host=amgr._mq_hostname, port=amgr._port))
    mq_channel = mq_connection.channel()
    mq_channel.basic_publish(exchange='',
                             routing_key='%s-completedq-1' % amgr._sid,
                             body=task_as_dict)

    amgr._terminate_sync = Event()
    sync_thread = Thread(target=amgr._synchronizer, name='synchronizer-thread')
    sync_thread.start()

    proc = Process(target=func_for_dequeue_test,
                   name='temp-proc',
                   args=(wfp, ))
    proc.start()
    proc.join()

    amgr._terminate_sync.set()
    sync_thread.join()

    assert not wfp.workflow_incomplete()
def test_state_order():

    """
    **Purpose**: Test if the Pipeline, Stage and Task are assigned their states in the correct order
    """

    def create_single_task():

        t1 = Task()
        t1.name = 'simulation'
        t1.executable = ['/bin/date']
        t1.copy_input_data = []
        t1.copy_output_data = []

        return t1

    p1 = Pipeline()
    p1.name = 'p1'

    s = Stage()
    s.name = 's1'
    s.tasks = create_single_task()
    s.add_tasks(create_single_task())

    p1.add_stages(s)

    res_dict = {

            'resource': 'local.localhost',
            'walltime': 5,
            'cpus': 1,
            'project': ''

    }

    os.environ['RADICAL_PILOT_DBURL'] = MLAB
    os.environ['RP_ENABLE_OLD_DEFINES'] = 'True'
    
    appman = Amgr(hostname=hostname, port=port)
    appman.resource_desc = res_dict

    appman.workflow = [p1]
    appman.run()

    p_state_hist = p1.state_history
    assert p_state_hist == ['DESCRIBED', 'SCHEDULING', 'DONE']

    s_state_hist = p1.stages[0].state_history
    assert s_state_hist == ['DESCRIBED', 'SCHEDULING', 'SCHEDULED', 'DONE']

    tasks = p1.stages[0].tasks

    for t in tasks:

        t_state_hist = t.state_history
        assert t_state_hist == ['DESCRIBED', 'SCHEDULING', 'SCHEDULED', 'SUBMITTING', 'SUBMITTED',
                            'EXECUTED', 'DEQUEUEING', 'DEQUEUED', 'DONE']
def get_pipeline(shared_fs=False, size=1):

    p = Pipeline()
    p.name = 'p'

    n = 4

    s1 = Stage()
    s1.name = 's1'
    for x in range(n):
        t = Task()
        t.name = 't%s'%x

        # dd if=/dev/random bs=<byte size of a chunk> count=<number of chunks> of=<output file name>

        t.executable = 'dd'

        if not shared_fs:
            t.arguments = ['if=/dev/urandom','bs=%sM'%size, 'count=1', 'of=$NODE_LFS_PATH/s1_t%s.txt'%x]
        else:
            t.arguments = ['if=/dev/urandom','bs=%sM'%size, 'count=1', 'of=/home/vivek91/s1_t%s.txt'%x]

        t.cpu_reqs['processes'] = 1
        t.cpu_reqs['threads_per_process'] = 24
        t.cpu_reqs['thread_type'] = ''
        t.cpu_reqs['process_type'] = ''
        t.lfs_per_process = 1024

        s1.add_tasks(t)

    p.add_stages(s1)

    s2 = Stage()
    s2.name = 's2'
    for x in range(n):
        t = Task()
        t.executable = ['dd']

        if not shared_fs:
            t.arguments = ['if=$NODE_LFS_PATH/s1_t%s.txt'%x,'bs=%sM'%size, 'count=1', 'of=$NODE_LFS_PATH/s2_t%s.txt'%x]
        else:
            t.arguments = ['if=/home/vivek91/s1_t%s.txt'%x,'bs=%sM'%size, 'count=1', 'of=/home/vivek91/s2_t%s.txt'%x]

        t.cpu_reqs['processes'] = 1
        t.cpu_reqs['threads_per_process'] = 24
        t.cpu_reqs['thread_type'] = ''
        t.cpu_reqs['process_type'] = ''
        t.tag = 't%s'%x

        s2.add_tasks(t)


    p.add_stages(s2)

    return p
def test_wfp_workflow_incomplete():

    p = Pipeline()
    s = Stage()
    t = Task()
    t.executable = ['/bin/date']
    s.add_tasks(t)
    p.add_stages(s)

    amgr = Amgr(hostname=hostname, port=port)
    amgr._setup_mqs()

    wfp = WFprocessor(sid=amgr._sid,
                      workflow=[p],
                      pending_queue=amgr._pending_queue,
                      completed_queue=amgr._completed_queue,
                      mq_hostname=amgr._mq_hostname,
                      port=amgr._port,
                      resubmit_failed=False)

    wfp._initialize_workflow()

    assert wfp.workflow_incomplete()

    amgr.workflow = [p]
    profiler = ru.Profiler(name='radical.entk.temp')

    p.stages[0].state == states.SCHEDULING
    p.state == states.SCHEDULED
    for t in p.stages[0].tasks:
        t.state = states.COMPLETED

    import json
    import pika

    task_as_dict = json.dumps(t.to_dict())
    mq_connection = pika.BlockingConnection(pika.ConnectionParameters(host=amgr._mq_hostname, port=amgr._port))
    mq_channel = mq_connection.channel()
    mq_channel.basic_publish(exchange='',
                             routing_key='%s-completedq-1' % amgr._sid,
                             body=task_as_dict)

    amgr._terminate_sync = Event()
    sync_thread = Thread(target=amgr._synchronizer, name='synchronizer-thread')
    sync_thread.start()

    proc = Process(target=func_for_dequeue_test, name='temp-proc', args=(wfp,))
    proc.start()
    proc.join()

    amgr._terminate_sync.set()
    sync_thread.join()

    assert not wfp.workflow_incomplete()
def test_stage_check_complete():

    s = Stage()
    t1 = Task()
    t1.executable = ['/bin/date']
    t2 = Task()
    t2.executable = ['/bin/date']
    s.add_tasks([t1, t2])

    assert s._check_stage_complete() == False
    s._set_tasks_state(states.DONE)
    assert s._check_stage_complete() == True
def test_amgr_synchronizer():

    logger = ru.Logger('radical.entk.temp_logger')
    profiler = ru.Profiler(name='radical.entk.temp')
    amgr = Amgr(hostname=hostname, port=port)

    amgr._setup_mqs()

    p = Pipeline()
    s = Stage()

    # Create and add 100 tasks to the stage
    for cnt in range(100):

        t = Task()
        t.executable = ['some-executable-%s' % cnt]

        s.add_tasks(t)

    p.add_stages(s)
    p._assign_uid(amgr._sid)
    p._validate()

    amgr.workflow = [p]

    for t in p.stages[0].tasks:
        assert t.state == states.INITIAL

    assert p.stages[0].state == states.INITIAL
    assert p.state == states.INITIAL

    # Start the synchronizer method in a thread
    amgr._terminate_sync = Event()
    sync_thread = Thread(target=amgr._synchronizer, name='synchronizer-thread')
    sync_thread.start()

    # Start the synchronizer method in a thread
    proc = Process(target=func_for_synchronizer_test, name='temp-proc',
                   args=(amgr._sid, p, logger, profiler))

    proc.start()
    proc.join()

    for t in p.stages[0].tasks:
        assert t.state == states.SCHEDULING

    assert p.stages[0].state == states.SCHEDULING
    assert p.state == states.SCHEDULING

    amgr._terminate_sync.set()
    sync_thread.join()
def generate_pipeline():

    def func_condition():

        global CUR_NEW_STAGE, MAX_NEW_STAGE

        if CUR_NEW_STAGE <= MAX_NEW_STAGE:
            return True

        return False

    def func_on_true():

        global CUR_NEW_STAGE
        CUR_NEW_STAGE += 1

        shuffle(p.stages[CUR_NEW_STAGE:])

    def func_on_false():
        print 'Done'

    # Create a Pipeline object
    p = Pipeline()

    for s in range(MAX_NEW_STAGE+1):

        # Create a Stage object
        s1 = Stage()

        for i in range(CUR_TASKS):

            t1 = Task()
            t1.executable = '/bin/sleep'
            t1.arguments = [ '30']

            # Add the Task to the Stage
            s1.add_tasks(t1)

        # Add post-exec to the Stage
        s1.post_exec = {
                        condition': func_condition,
                        on_true': func_on_true,
                        on_false': func_on_false
                        }

        # Add Stage to the Pipeline
        p.add_stages(s1)

    return p
def test_stage_set_tasks_state():

    s = Stage()
    t1 = Task()
    t1.executable = ['/bin/date']
    t2 = Task()
    t2.executable = ['/bin/date']
    s.add_tasks([t1, t2])

    with pytest.raises(ValueError):
        s._set_tasks_state(2)

    s._set_tasks_state(states.DONE)
    assert t1.state == states.DONE
    assert t2.state == states.DONE
def on_true():

    global NUM_TASKS, CUR_STAGE

    NUM_TASKS *= 2

    s = Stage()
    s.name = 's%s'%CUR_STAGE

    for t in range(NUM_TASKS):
        s.add_tasks(create_single_task())

    s.post_exec = condition

    p1.add_stages(s)
    def create_pipeline():

        p = Pipeline()

        s = Stage()

        t1 = Task()
        t1.name = 'simulation'
        t1.executable = ['sleep']
        t1.arguments = ['10']

        s.add_tasks(t1)

        p.add_stages(s)

        return p
def test_wfp_enqueue():

    p = Pipeline()
    s = Stage()
    t = Task()
    t.executable = ['/bin/date']
    s.add_tasks(t)
    p.add_stages(s)

    amgr = Amgr(hostname=hostname, port=port)
    amgr._setup_mqs()

    wfp = WFprocessor(sid=amgr._sid,
                      workflow=[p],
                      pending_queue=amgr._pending_queue,
                      completed_queue=amgr._completed_queue,
                      mq_hostname=amgr._mq_hostname,
                      port=amgr._port,
                      resubmit_failed=False)

    wfp._initialize_workflow()

    amgr.workflow = [p]
    profiler = ru.Profiler(name='radical.entk.temp')

    for t in p.stages[0].tasks:
        assert t.state == states.INITIAL

    assert p.stages[0].state == states.INITIAL
    assert p.state == states.INITIAL

    amgr._terminate_sync = Event()
    sync_thread = Thread(target=amgr._synchronizer, name='synchronizer-thread')
    sync_thread.start()

    proc = Process(target=func_for_enqueue_test, name='temp-proc', args=(wfp,))
    proc.start()
    proc.join()

    amgr._terminate_sync.set()
    sync_thread.join()

    for t in p.stages[0].tasks:
        assert t.state == states.SCHEDULED

    assert p.stages[0].state == states.SCHEDULED
    assert p.state == states.SCHEDULING
    def create_pipeline():

        p = Pipeline()

        s = Stage()

        t1 = Task()
        t1.name = 'simulation'
        t1.executable = ['/bin/echo']
        t1.arguments = ['hello']
        t1.copy_input_data = []
        t1.copy_output_data = []

        s.add_tasks(t1)

        p.add_stages(s)

        return p
def generate_pipeline():

    def func_condition():

        p.suspend()
        print 'Suspending pipeline %s for 10 seconds' %p.uid
        sleep(10)
        return True

    def func_on_true():

        print 'Resuming pipeline %s' %p.uid
        p.resume()

    def func_on_false():
        pass

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s1 = Stage()

    for i in range(10):

        t1 = Task()
        t1.executable = '/bin/sleep'
        t1.arguments = ['30']

        # Add the Task to the Stage
        s1.add_tasks(t1)

    # Add post-exec to the Stage
    s1.post_exec = {
        'condition': func_condition,
        'on_true': func_on_true,
        'on_false': func_on_false
    }

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
def test_integration_local():

    """
    **Purpose**: Run an EnTK application on localhost
    """

    def create_single_task():

        t1 = Task()
        t1.name = 'simulation'
        t1.executable = ['/bin/echo']
        t1.arguments = ['hello']
        t1.copy_input_data = []
        t1.copy_output_data = []

        return t1

    p1 = Pipeline()
    p1.name = 'p1'

    s = Stage()
    s.name = 's1'
    s.tasks = create_single_task()
    s.add_tasks(create_single_task())

    p1.add_stages(s)

    res_dict = {

            'resource': 'local.localhost',
            'walltime': 5,
            'cpus': 1,
            'project': ''

    }

    os.environ['RADICAL_PILOT_DBURL'] = MLAB

    appman = AppManager(hostname=hostname, port=port)
    appman.resource_desc = res_dict
    appman.workflow = [p1]
    appman.run()
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s1 = Stage()

    # Create a Task object which creates a file named 'output.txt' of size 1 MB
    t1 = Task()
    t1.executable = ['/bin/sleep']
    t1.arguments = ['300']

    # Add the Task to the Stage
    s1.add_tasks(t1)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s1 = Stage()

    # Create a Task object which creates a file named 'output.txt' of size 1 MB
    t1 = Task()
    t1.executable = ['mv']
    t1.arguments = ['temp','/tmp/']
    t1.upload_input_data = ['%s/temp'%cur_dir]

    # Add the Task to the Stage
    s1.add_tasks(t1)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
def test_wfp_initialize_workflow():

    p = Pipeline()
    s = Stage()
    t = Task()
    t.executable = ['/bin/date']
    s.add_tasks(t)
    p.add_stages(s)

    wfp = WFprocessor(sid='test',
                      workflow=[p],
                      pending_queue=list(),
                      completed_queue=list(),
                      mq_hostname=hostname,
                      port=port,
                      resubmit_failed=False)

    wfp._initialize_workflow()
    assert p.uid is not None
    assert p.stages[0].uid is not None
    for t in p.stages[0].tasks:
        assert t.uid is not None
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s1 = Stage()

    # Create a Task object which creates a file named 'output.txt' of size 1 MB
    for x in range(10):
        t1 = Task()
        t1.executable = 'cat'
        t1.arguments = ['file1.txt','file2.txt','>','output.txt']
        t1.copy_input_data = ['$SHARED/file1.txt', '$SHARED/file2.txt']
        t1.download_output_data = ['output.txt > %s/output_%s.txt' %(cur_dir,x+1)]

        # Add the Task to the Stage
        s1.add_tasks(t1)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()
    p.name = 'p1'

    # Create a Stage object
    s1 = Stage()
    s1.name = 's1'

    # Create 4K tasks to ensure we don't hit any RMQ connection drops
    for _ in range(4096):
        t1 = Task()
        t1.executable = ['/bin/echo']
        t1.arguments = ['"Hello World"']

        # Add the Task to the Stage
        s1.add_tasks(t1)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()
    p.name = 'p1'

    # Create a Stage object
    s1 = Stage()
    s1.name = 's1'

    # Create a Task object which creates a file named 'output.txt' of size 1 MB
    t1 = Task()
    t1.name = 't1'
    t1.executable = ['/bin/false']
    # t1.arguments = ['"Hello World"','>>','temp.txt']

    # Add the Task to the Stage
    s1.add_tasks(t1)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
def test_stage_exceptions(t, l, i, b, se):
    """
    ***Purpose***: Test if correct exceptions are raised when attributes are
    assigned unacceptable values.
    """

    s = Stage()

    data_type = [t, l, i, b, se]

    for data in data_type:

        print 'Using: %s, %s' % (data, type(data))

        if not isinstance(data, str):
            with pytest.raises(TypeError):
                s.name = data

        with pytest.raises(TypeError):
            s.tasks = data

        with pytest.raises(TypeError):
            s.add_tasks(data)
def test_stage_pass_uid():

    s = Stage()
    s._uid = 's'
    s.name = 's1'
    s.parent_pipeline['uid'] = 'p'
    s.parent_pipeline['name'] = 'p1'

    t1 = Task()
    t2 = Task()
    s.add_tasks([t1,t2])

    s._pass_uid()

    assert t1.parent_stage['uid'] == s.uid
    assert t1.parent_stage['name'] == s.name
    assert t1.parent_pipeline['uid'] == s.parent_pipeline['uid']
    assert t1.parent_pipeline['name'] == s.parent_pipeline['name']

    assert t2.parent_stage['uid'] == s.uid
    assert t2.parent_stage['name'] == s.name
    assert t2.parent_pipeline['uid'] == s.parent_pipeline['uid']
    assert t2.parent_pipeline['name'] == s.parent_pipeline['name']
    def func_on_true():

        global CUR_NEW_STAGE

        CUR_NEW_STAGE += 1

        s = Stage()

        for i in range(10):
            t = Task()
            t.executable = '/bin/sleep'
            t.arguments = [ '30']

            s.add_tasks(t)

        # Add post-exec to the Stage
        s.post_exec = {
                        'condition': func_condition,
                        'on_true': func_on_true,
                        'on_false': func_on_false
                    }

        p.add_stages(s)
def generate_pipeline():

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s1 = Stage()

    # Create a Task object which creates a file named 'output.txt' of size 1 MB
    t1 = Task()
    t1.executable = '/bin/bash'
    t1.arguments = ['-l', '-c', 'base64 /dev/urandom | head -c 1000000 > output.txt']

    # Add the Task to the Stage
    s1.add_tasks(t1)

    # Add Stage to the Pipeline
    p.add_stages(s1)

    # Create another Stage object to hold character count tasks
    s2 = Stage()

    # Create a Task object
    t2 = Task()
    t2.executable = '/bin/bash'
    t2.arguments = ['-l', '-c', 'grep -o . output.txt | sort | uniq -c > ccount.txt']
    # Copy data from the task in the first stage to the current task's location
    t2.copy_input_data = ['$Pipline_%s_Stage_%s_Task_%s/output.txt' % (p.uid, s1.uid, t1.uid)]

    # Add the Task to the Stage
    s2.add_tasks(t2)

    # Add Stage to the Pipeline
    p.add_stages(s2)

    # Create another Stage object to hold checksum tasks
    s3 = Stage()

    # Create a Task object
    t3 = Task()
    t3.executable = '/bin/bash'
    t3.arguments = ['-l', '-c', 'sha1sum ccount.txt > chksum.txt']
    # Copy data from the task in the first stage to the current task's location
    t3.copy_input_data = ['$Pipline_%s_Stage_%s_Task_%s/ccount.txt' % (p.uid, s2.uid, t2.uid)]
    # Download the output of the current task to the current location
    t3.download_output_data = ['chksum.txt > chksum_%s.txt' % cnt]

    # Add the Task to the Stage
    s3.add_tasks(t3)

    # Add Stage to the Pipeline
    p.add_stages(s3)

    return p
def generate_pipeline():

    def func_condition():

        global CUR_NEW_STAGE, MAX_NEW_STAGE

        if CUR_NEW_STAGE <= MAX_NEW_STAGE:
            return True

        return False

    def func_on_true():

        global CUR_NEW_STAGE

        CUR_NEW_STAGE += 1

        s = Stage()

        for i in range(10):
            t = Task()
            t.executable = '/bin/sleep'
            t.arguments = [ '30']

            s.add_tasks(t)

        # Add post-exec to the Stage
        s.post_exec = {
                        'condition': func_condition,
                        'on_true': func_on_true,
                        'on_false': func_on_false
                    }

        p.add_stages(s)

    def func_on_false():
        print 'Done'

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s1 = Stage()

    for i in range(10):

        t1 = Task()
        t1.executable = ['sleep']
        t1.arguments = [ '30']

        # Add the Task to the Stage
        s1.add_tasks(t1)

    # Add post-exec to the Stage
    s1.post_exec = {
                        'condition': func_condition,
                        'on_true': func_on_true,
                        'on_false': func_on_false
                    }

    # Add Stage to the Pipeline
    p.add_stages(s1)

    return p
    stage_uids = list()
    task_uids = dict()
    Stages = 3
    Replicas = 4
    for N_Stg in range(Stages):
        stg =  Stage() ## initialization
        task_uids['Stage_%s'%N_Stg] = list()
        if N_Stg == 0:
            for n0 in range(Replicas):
                t = Task()
                t.executable = ['/usr/local/packages/gromacs/5.1.4/INTEL-140-MVAPICH2-2.0/bin/gmx_mpi_d']  #MD Engine  
                t.upload_input_data = ['in.gro', 'in.top', 'FNF.itp', 'martini_v2.2.itp', 'in.mdp'] 
                t.pre_exec = ['module load gromacs', '/usr/local/packages/gromacs/5.1.4/INTEL-140-MVAPICH2-2.0/bin/gmx_mpi_d grompp -f in.mdp -c in.gro -o in.tpr -p in.top'] 
                t.arguments = ['mdrun', '-s', 'in.tpr', '-deffnm', 'out']
                t.cores = 32
                stg.add_tasks(t)
                task_uids['Stage_%s'%N_Stg].append(t.uid)
            p.add_stages(stg)
            stage_uids.append(stg.uid) 



        else:
        
            for n0 in range(Replicas):
                t = Task()
                t.executable = ['/usr/local/packages/gromacs/5.1.4/INTEL-140-MVAPICH2-2.0/bin/gmx_mpi_d']  #MD Engine  
                t.copy_input_data = ['$Pipeline_%s_Stage_%s_Task_%s/out.gro > in.gro'%(p.uid, stage_uids[N_Stg-1], task_uids['Stage_%s'%(N_Stg-1)][n0]), '$Pipeline_%s_Stage_%s_Task_%s/in.top'%(p.uid, stage_uids[N_Stg-1], task_uids['Stage_%s'%(N_Stg-1)][n0]),  '$Pipeline_%s_Stage_%s_Task_%s/FNF.itp'%(p.uid, stage_uids[N_Stg-1], task_uids['Stage_%s'%(N_Stg-1)][n0]),  '$Pipeline_%s_Stage_%s_Task_%s/martini_v2.2.itp'%(p.uid, stage_uids[N_Stg-1], task_uids['Stage_%s'%(N_Stg-1)][n0]),  '$Pipeline_%s_Stage_%s_Task_%s/in.mdp'%(p.uid, stage_uids[N_Stg-1], task_uids['Stage_%s'%(N_Stg-1)][n0])]
                t.pre_exec = ['module load gromacs', '/usr/local/packages/gromacs/5.1.4/INTEL-140-MVAPICH2-2.0/bin/gmx_mpi_d grompp -f in.mdp -c in.gro -o in.tpr -p in.top'] 
                t.arguments = ['mdrun', '-s', 'in.tpr', '-deffnm', 'out']
                t.cores = 32
if __name__ == '__main__':

    # Create a Pipeline object
    p = Pipeline()

    # Create a Stage object
    s = Stage()

    # Create a Task object
    t = Task()
    t.name = 'my-first-task'        # Assign a name to the task (optional, do not use ',' or '_')
    t.executable = '/bin/echo'   # Assign executable to the task
    t.arguments = ['Hello World']  # Assign arguments for the task executable

    # Add Task to the Stage
    s.add_tasks(t)

    # Add Stage to the Pipeline
    p.add_stages(s)

    # Create Application Manager
    appman = AppManager(hostname=hostname, port=port)

    # Create a dictionary describe four mandatory keys:
    # resource, walltime, and cpus
    # resource is 'local.localhost' to execute locally
    res_dict = {

        'resource': 'local.localhost',
        'walltime': 10,
        'cpus': 1