def create_profile():
    lm = Landmarks('Data/Landmarks/original/landmarks1-1.txt')
    img = rg.load()
    img = rg.enhance(img[0])
    grad_img = rg.togradient_sobel(img)
    profile = Profile(img, grad_img, lm, 30, 40)
    Plotter.plot_profile(grad_img, profile)
Exemple #2
0
def create_profile():
    lm = Landmarks('Data/Landmarks/original/landmarks1-1.txt')
    img = rg.load()
    img = rg.enhance(img[0])
    grad_img = rg.togradient_sobel(img)
    profile = Profile(img, grad_img, lm, 30, 40)
    Plotter.plot_profile(grad_img, profile)
Exemple #3
0
def build_grey_level_model():
    lms = landmarks.load(2)
    images = rg.load()
    images = [rg.enhance(img) for img in images]
    gimages = [rg.togradient_sobel(img) for img in images]

    glm = GreyLevelModel()
    glm.build(images, gimages, lms, 10, 20)
    Plotter.plot_grey_level_model(glm, gimages)
def build_grey_level_model():
    lms = landmarks.load(2)
    images = rg.load()
    images = [rg.enhance(img) for img in images]
    gimages = [rg.togradient_sobel(img) for img in images]

    glm = GreyLevelModel()
    glm.build(images, gimages, lms, 10, 20)
    Plotter.plot_grey_level_model(glm, gimages)
def auto_init():
    imgs = rg.load()
    for radiograph in range(0, 14):
        img = imgs[radiograph]
        X = []
        for tooth in range(1, 9):
            model = IncisorModel.load(tooth)
            X.append(ai.init(model, img))
        Plotter.plot_landmarks_on_image(X, img, show=False, save=True,
                                        title='Autoinit/%02d' % (radiograph,))
def build_database(path):
    """Interactively select ROIs on the dental radiographs for creating the
    appearance model used for the automatic initialization.

    Args:
        path (str): The location of the dental radiographs.

    """
    images = rg.load(path+"/", indices=range(1, 31))
    create_database(images)
Exemple #7
0
def train_and_save():
    # parameters
    k = 10

    imgs = rg.load()
    for tooth in range(1, 9):
        lms = landmarks.load_mirrored(tooth)
        model = IncisorModel(tooth)
        model.train(lms, imgs, k)
        model.save()
def train_and_save():
    # parameters
    k = 10

    imgs = rg.load()
    for tooth in range(1, 9):
        lms = landmarks.load_mirrored(tooth)
        model = IncisorModel(tooth)
        model.train(lms, imgs, k)
        model.save()
def fit(radiograph_index, incisor_ind, fit_mode, k, m, out):
    """Find the region of an incisor, using the given parameters.

    Args:
        radiograph_index (int): The index of the dental radiograph to fit on.
        incisor_ind (int): The index of the incisor to fit.
        fit mode (AUTO|MANUAL): Wheter to ask for a manual initial fit, or try
            to find one automatically.
        k (int): Number of pixels either side of point to represent in grey model.
        m (int): Number of sample points either side of current point for search.
        out (str): The location to store the result.
    """
    # leave-one-out
    train_indices = range(0, 14)
    train_indices.remove(radiograph_index-1)

    lms = landmarks.load_mirrored(incisor_ind)
    test_lm = lms[radiograph_index-1]
    train_lms = [lms[index] for index in train_indices]

    imgs = rg.load()
    test_img = imgs[radiograph_index-1]
    train_imgs = [imgs[index] for index in train_indices]

    # train
    model = IncisorModel(incisor_ind)
    model.train(train_lms, train_imgs, k)

    # fit
    X = model.estimate_fit(test_img, fit_mode)
    X = model.fit(X, test_img, m)

    # evaluate
    ## show live
    Plotter.plot_landmarks_on_image([test_lm, X], test_img, wait=False)
    ## save image with tooth circled
    img = test_img.copy()
    colors = [(255, 0, 0), (0, 255, 0)]
    for ind, lms in enumerate([test_lm, X]):
        points = lms.as_matrix()
        for i in range(len(points) - 1):
            cv2.line(img, (int(points[i, 0]), int(points[i, 1])),
                     (int(points[i + 1, 0]), int(points[i + 1, 1])),
                     colors[ind])
    cv2.imwrite('%s/%02d-%d.png' % (out, radiograph_index, incisor_ind,), img)
    ## save tooth region segmented
    height, width, _ = test_img.shape
    image2 = np.zeros((height, width), np.int8)
    mask = np.array([X.points], dtype=np.int32)
    cv2.fillPoly(image2, [mask], 255)
    maskimage2 = cv2.inRange(image2, 1, 255)
    segmented = cv2.bitwise_and(test_img, test_img, mask=maskimage2)
    cv2.imwrite('%s/%02d-%d-segmented.png' % (out, radiograph_index, incisor_ind,), segmented)
Exemple #10
0
def auto_init():
    imgs = rg.load()
    for radiograph in range(0, 14):
        img = imgs[radiograph]
        X = []
        for tooth in range(1, 9):
            model = IncisorModel.load(tooth)
            X.append(ai.init(model, img))
        Plotter.plot_landmarks_on_image(X,
                                        img,
                                        show=False,
                                        save=True,
                                        title='Autoinit/%02d' % (radiograph, ))
def preprocess(path):
    """Apply an adaptive median filter to the radiographs at the given path and
    stores the results in a separate ``filtered`` folder.

    Args:
        path (str): The location of the dental radiographs.

    """
    images = rg.load(path+"/")
    for ind, img in enumerate(images):
        print "Preprocessing radiographs ["+str(ind+1)+"/14]"
        img = rg.adaptive_median(img, 3, 5)
        cv2.imwrite("%s/filtered/%02d.tif" % (path, ind+1,), img)
def auto_fit():
    # parameters
    m = 15

    imgs = rg.load()
    for radiograph in range(0, 14):
        img = imgs[radiograph]
        Xs = []
        for tooth in range(1, 9):
            model = IncisorModel.load(tooth)
            X = model.estimate_fit(img, MODE_FIT_AUTO)
            X = model.fit(X, img, m)
            Xs.append(X)
        Plotter.plot_landmarks_on_image(Xs, img, show=False, save=True,
                                        title='Autofit/%02d' % (radiograph,))
Exemple #13
0
def auto_fit():
    # parameters
    m = 15

    imgs = rg.load()
    for radiograph in range(0, 14):
        img = imgs[radiograph]
        Xs = []
        for tooth in range(1, 9):
            model = IncisorModel.load(tooth)
            X = model.estimate_fit(img, MODE_FIT_AUTO)
            X = model.fit(X, img, m)
            Xs.append(X)
        Plotter.plot_landmarks_on_image(Xs,
                                        img,
                                        show=False,
                                        save=True,
                                        title='Autofit/%02d' % (radiograph, ))
def run_experiment(mode):
    """Test the fit quality for all training examples.

    Args:
        mode: MODE_FIT_AUTO or MODE_FIT_MANUAL

    """
    imgs = rg.load()
    for radiograph in range(0, 14):
        Xs = []
        for tooth in range(1, 9):
            X = test_fit(radiograph, tooth, mode)
            Xs.append(X)
        img = imgs[radiograph]
        Plotter.plot_landmarks_on_image(Xs,
                                        img,
                                        show=False,
                                        save=True,
                                        title='Results/%02d' %
                                        (radiograph + 1, ))
def init(model, img, show=False):
    """Find an initial estimate for the model in the given image.

    Args:
        model (Landmarks): The shape which should be fitted.
        img: The dental radiograph on which the shape should be fitted.

    Returns:
        Landmarks: An initial estimate for the position of the model in the given image.

    """
    # Are we fitting a lower or an upper incisor?
    tooth = model.incisor_nr
    is_upper = tooth < 5
    if is_upper:
        # UPPER: Avg. height: 314.714285714, Avg. width: 381.380952381
        width = 380
        height = 315
    else:
        # LOWER: Avg. height: 259.518518519, Avg. width: 281.518518519
        width = 280
        height = 260

    # Create the appearance model for the four upper/lower teeth
    radiographs = rg.load()
    data = load_database(radiographs, is_upper, width, height)
    [_, evecs, mean] = pca(data, 5)

    # Visualize the appearance model
    # cv2.imshow('img',np.hstack( (mean.reshape(height,width),
    #                              normalize(evecs[:,0].reshape(height,width)),
    #                              normalize(evecs[:,1].reshape(height,width)),
    #                              normalize(evecs[:,2].reshape(height,width)))
    #                            ).astype(np.uint8))
    # cv2.waitKey(0)

    # Find the jaw split
    jaw_split = split_jaws(img)

    # Find the region of the radiograph that matches best with the appearance model
    img = rg.enhance(img)
    [(a, b), (c, d)], _ = find_bbox(mean, evecs, img, width, height, is_upper, jaw_split, show=show)

    # Assume all teeth have more or less the same width
    ind = tooth if tooth < 5 else tooth - 4
    bbox = [(a +(ind-1)*(c-a)/4, b), (a +(ind)*(c-a)/4, d)]
    center = np.mean(bbox, axis=0)

    # Plot a bounding box around the estimated region of the requested tooth
    if show:
        Plotter.plot_autoinit(img, bbox, 0, jaw_split, wait=True)

    # Position the mean shape of the requested incisor inside the bbox
    template = model.asm.mean_shape.scale_to_bbox(bbox).translate(center)

    # The position of the lower incisors is further improved using the grey-level model
    if is_upper:
        X = template
    else:
        X = template
        # X = fit_template(template, model, img)

    # Show the final result
    if show:
        Plotter.plot_landmarks_on_image([X], img)

    # Return the estimated position of the shape's landmark points
    return X
def AM_filter():
    img = rg.load()[0]
    filt_img = rg.adaptive_median(img, 3, 5)
    cv2.imwrite('Data/Radiographs/filtered/01.tif', filt_img)
def init(model, img, show=False):
    """Find an initial estimate for the model in the given image.

    Args:
        model (Landmarks): The shape which should be fitted.
        img: The dental radiograph on which the shape should be fitted.

    Returns:
        Landmarks: An initial estimate for the position of the model in the given image.

    """
    # Are we fitting a lower or an upper incisor?
    tooth = model.incisor_nr
    is_upper = tooth < 5
    if is_upper:
        # UPPER: Avg. height: 314.714285714, Avg. width: 381.380952381
        width = 380
        height = 315
    else:
        # LOWER: Avg. height: 259.518518519, Avg. width: 281.518518519
        width = 280
        height = 260

    # Create the appearance model for the four upper/lower teeth
    radiographs = rg.load()
    data = load_database(radiographs, is_upper, width, height)
    [_, evecs, mean] = pca(data, 5)

    # Visualize the appearance model
    # cv2.imshow('img',np.hstack( (mean.reshape(height,width),
    #                              normalize(evecs[:,0].reshape(height,width)),
    #                              normalize(evecs[:,1].reshape(height,width)),
    #                              normalize(evecs[:,2].reshape(height,width)))
    #                            ).astype(np.uint8))
    # cv2.waitKey(0)

    # Find the jaw split
    jaw_split = split_jaws(img)

    # Find the region of the radiograph that matches best with the appearance model
    img = rg.enhance(img)
    [(a, b), (c, d)], _ = find_bbox(mean,
                                    evecs,
                                    img,
                                    width,
                                    height,
                                    is_upper,
                                    jaw_split,
                                    show=show)

    # Assume all teeth have more or less the same width
    ind = tooth if tooth < 5 else tooth - 4
    bbox = [(a + (ind - 1) * (c - a) / 4, b), (a + (ind) * (c - a) / 4, d)]
    center = np.mean(bbox, axis=0)

    # Plot a bounding box around the estimated region of the requested tooth
    if show:
        Plotter.plot_autoinit(img, bbox, 0, jaw_split, wait=True)

    # Position the mean shape of the requested incisor inside the bbox
    template = model.asm.mean_shape.scale_to_bbox(bbox).translate(center)

    # The position of the lower incisors is further improved using the grey-level model
    if is_upper:
        X = template
    else:
        X = template
        # X = fit_template(template, model, img)

    # Show the final result
    if show:
        Plotter.plot_landmarks_on_image([X], img)

    # Return the estimated position of the shape's landmark points
    return X
    center = np.mean(bbox, axis=0)

    # Plot a bounding box around the estimated region of the requested tooth
    if show:
        Plotter.plot_autoinit(img, bbox, 0, jaw_split, wait=True)

    # Position the mean shape of the requested incisor inside the bbox
    template = model.asm.mean_shape.scale_to_bbox(bbox).translate(center)

    # The position of the lower incisors is further improved using the grey-level model
    if is_upper:
        X = template
    else:
        X = template
        # X = fit_template(template, model, img)

    # Show the final result
    if show:
        Plotter.plot_landmarks_on_image([X], img)

    # Return the estimated position of the shape's landmark points
    return X


if __name__ == '__main__':
    # create_database()
    from incisor_model import IncisorModel
    model = IncisorModel.load(5)
    img = rg.load()[7]
    init(model, img, show=False)
Exemple #19
0
def preprocess():
    img = rg.load()[0]
    img = rg.enhance(img)
    grad = rg.togradient_sobel(img)
    lms = landmarks.load_all_incisors_of_example(1)
    Plotter.plot_landmarks_on_image(lms, grad)
Exemple #20
0
def AM_filter():
    img = rg.load()[0]
    filt_img = rg.adaptive_median(img, 3, 5)
    cv2.imwrite('Data/Radiographs/filtered/01.tif', filt_img)
    """
    def gaussian_function(sigma, u):
        return 1 / (math.sqrt(2 * math.pi) * sigma) * math.e**-(u**2 /
                                                                (2 * sigma**2))

    if filter_length is None:
        #determine the length of the filter
        filter_length = math.ceil(sigma * 5)
        #make the length odd
        filter_length = 2 * (int(filter_length) / 2) + 1

    #make sure sigma is a float
    sigma = float(sigma)

    #create the filter
    result = np.asarray([
        gaussian_function(sigma, u)
        for u in range(-(filter_length / 2), filter_length / 2 + 1, 1)
    ])
    result = result / result.sum()

    #return the filter
    return result


if __name__ == '__main__':
    # test it on all radiographs
    imgs = rg.load()
    for i in range(0, 14):
        split_jaws(imgs[i], 50, True)
def test_fit(test_index, incisor_ind, fit_mode):
    """Test the fit quality of one incisor using leave-one-out analysis.

    Args:
        test_index (int): The index of the radiograph to fit on. [0-13]
        incisor_ind (int): The index of the incisor to fit. [1-8]
        fit_mode: MODE_FIT_AUTO or MODE_FIT_MANUAL

    Returns:
        Landmarks: The fitted model.

    """
    # parameters
    k = 10
    m = 15

    # leave-one-out
    train_indices = range(0, 14)
    train_indices.remove(test_index)

    lms = landmarks.load_mirrored(incisor_ind)
    test_lm = lms[test_index]
    train_lms = [lms[index] for index in train_indices]

    imgs = rg.load()
    test_img = imgs[test_index]
    train_imgs = [imgs[index] for index in train_indices]

    # train
    model = IncisorModel(incisor_ind)
    model.train(train_lms, train_imgs, k)

    # test
    X = model.estimate_fit(test_img, fit_mode)
    X = model.fit(X, test_img, m)

    # evaluate
    Plotter.plot_landmarks_on_image([test_lm, X], test_img, wait=False)
    fit = fit_quality(test_lm, X)

    # save result
    ## landmark annotated
    img = test_img.copy()
    colors = [(255, 0, 0), (0, 255, 0)]
    for ind, lms in enumerate([test_lm, X]):
        points = lms.as_matrix()
        for i in range(len(points) - 1):
            cv2.line(img, (int(points[i, 0]), int(points[i, 1])),
                     (int(points[i + 1, 0]), int(points[i + 1, 1])),
                     colors[ind])
    cv2.imwrite('Plot/Results/%02d-%d.png' % (
        test_index + 1,
        incisor_ind,
    ), img)

    ## tooth region segmented
    height, width, _ = test_img.shape
    image2 = np.zeros((height, width), np.int8)
    mask = np.array([X.points], dtype=np.int32)
    cv2.fillPoly(image2, [mask], 255)
    maskimage2 = cv2.inRange(image2, 1, 255)
    out = cv2.bitwise_and(test_img, test_img, mask=maskimage2)
    cv2.imwrite(
        'Plot/Results/Segmentations/%02d-%d.png' % (
            test_index + 1,
            incisor_ind - 1,
        ), out)

    truth = cv2.imread(
        'Data/Segmentations/%02d-%d.png' % (
            test_index + 1,
            incisor_ind - 1,
        ), 0)
    (_, truth) = cv2.threshold(truth, 128, 255,
                               cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    fit = cv2.imread(
        'Plot/Results/Segmentations/%02d-%d.png' % (
            test_index + 1,
            incisor_ind - 1,
        ), 0)
    (_, fit) = cv2.threshold(fit, 128, 255,
                             cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    fit2 = fit_quality2(truth, fit)

    ## fit quality
    results = np.loadtxt('experiment_results.csv', delimiter=',')
    results[test_index, incisor_ind - 1] = fit2
    np.savetxt('experiment_results.csv', results, fmt='%10.2f', delimiter=',')

    return X
    # Plot a bounding box around the estimated region of the requested tooth
    if show:
        Plotter.plot_autoinit(img, bbox, 0, jaw_split, wait=True)

    # Position the mean shape of the requested incisor inside the bbox
    template = model.asm.mean_shape.scale_to_bbox(bbox).translate(center)

    # The position of the lower incisors is further improved using the grey-level model
    if is_upper:
        X = template
    else:
        X = template
        # X = fit_template(template, model, img)

    # Show the final result
    if show:
        Plotter.plot_landmarks_on_image([X], img)

    # Return the estimated position of the shape's landmark points
    return X


if __name__ == '__main__':
    # create_database()
    from incisor_model import IncisorModel
    model = IncisorModel.load(5)
    img = rg.load()[7]
    init(model, img, show=False)

        A 1-D numpy array of odd length, containing the symmetric, discrete
        approximation of a Gaussian with sigma Summation of the array-values
        must be equal to one.

    """
    def gaussian_function(sigma, u):
        return 1/(math.sqrt(2*math.pi)*sigma)*math.e**-(u**2/(2*sigma**2))

    if filter_length is None:
        #determine the length of the filter
        filter_length = math.ceil(sigma*5)
        #make the length odd
        filter_length = 2*(int(filter_length)/2) + 1

    #make sure sigma is a float
    sigma = float(sigma)

    #create the filter
    result = np.asarray([gaussian_function(sigma, u) for u in range(-(filter_length/2), filter_length/2 + 1, 1)])
    result = result / result.sum()

    #return the filter
    return result


if __name__ == '__main__':
    # test it on all radiographs
    imgs = rg.load()
    for i in range(0, 14):
        split_jaws(imgs[i], 50, True)
def preprocess():
    img = rg.load()[0]
    img = rg.enhance(img)
    grad = rg.togradient_sobel(img)
    lms = landmarks.load_all_incisors_of_example(1)
    Plotter.plot_landmarks_on_image(lms, grad)