Exemple #1
0
 def _select_mutagen_indices(self, target_index):
     possible_indices = [
         i for i in range(self.population_size) if i is not target_index
     ]
     _shuffle(possible_indices)
     mutagen_indices = possible_indices[:self.number_of_mutagens]
     return mutagen_indices
Exemple #2
0
    def get_statistic_for_models(self, models, limit=100, shuffle=True):
        """

        -> example of usage:
        -> from myapp.models import MyModel
        -> from myotherapp.models import MyOtherModel
        -> from statistic.models import Statistic
        -> Statistic.objects.get_statistic_for_models([MyModel, MyOtherModel], limit=50, shuffle=True)
        <- [<MyModel: MyModel object>, <MyOtherModel: MyOtherModel object>, <MyModel: MyModel object>, ...]

        :param models: [model_cls_A, model_cls_B]
        :param limit: int, limit of total returned objects
        :param shuffle:  bool
        :return: list of objects
        """
        assert isinstance(models, list), '`models` must be list of models cls'
        statistic = \
            list(
                chain(
                    map(
                        lambda model: self.get_statistic_for_model(model, limit=limit/len(models)),
                        models
                    )
                )
            )
        if shuffle:
            _shuffle(statistic)
        return statistic
Exemple #3
0
def shuffle(input_list: list) -> list:
    r"""listutils.shuffle(input_list)

    This function returns a shuffled list with the same elements as the input
    list. Usage:

    >>> alist = [0, 1, 2, 3, 4]
    >>> listutils.shuffle(alist)
    [2, 1, 4, 0, 3]

    It differs from random.shuffle() since listutils.shuffle() outputs a new
    list, preserving the input one:

    >>> alist = [0, 1, 2, 3, 4]
    >>> listutils.shuffle(alist)
    [2, 1, 4, 0, 3]
    >>> alist
    [0, 1, 2, 3, 4]
    >>> import random
    >>> random.shuffle(alist)
    >>> alist
    [3, 2, 1, 4, 0]
    """
    if not isinstance(input_list, list):
        raise TypeError('\'input_list\' must be \'list\'')
    shuffled_list = input_list[:]
    _shuffle(shuffled_list)
    return shuffled_list
	def test_sort(self):
		data = list(range(2 * _getrecursionlimit()))
		rnddata = list(data)
		_shuffle(rnddata)
		self.assertNotEqual(data, rnddata)
		self.assertEqual(data, list(self.cls(rnddata)))
		self.assertEqual(list(reversed(data)), list(reversed(self.cls(rnddata))))
Exemple #5
0
    def get_statistic_for_models(self, models, limit=100, shuffle=True):
        """

        -> example of usage:
        -> from myapp.models import MyModel
        -> from myotherapp.models import MyOtherModel
        -> from statistic.models import Statistic
        -> Statistic.objects.get_statistic_for_models([MyModel, MyOtherModel], limit=50, shuffle=True)
        <- [<MyModel: MyModel object>, <MyOtherModel: MyOtherModel object>, <MyModel: MyModel object>, ...]

        :param models: [model_cls_A, model_cls_B]
        :param limit: int, limit of total returned objects
        :param shuffle:  bool
        :return: list of objects
        """
        assert isinstance(models, list), '`models` must be list of models cls'
        statistic = \
            list(
                chain(
                    map(
                        lambda model: self.get_statistic_for_model(model, limit=limit/len(models)),
                        models
                    )
                )
            )
        if shuffle:
            _shuffle(statistic)
        return statistic
	def _pack_islands(self):
		# Несколько итераций перепаковки
		# TODO вернуть систему с раундами
		boxes = list()  # type: List[List[Union[float, UVTransform]]]
		for metas in self._transforms.values():
			for meta in metas:
				boxes.append([*meta.packed_norm, meta])
		_log.info("Packing {0} islands...".format(len(boxes)))
		best = _int_maxsize
		rounds = 15  # TODO
		while rounds > 0:
			rounds -= 1
			# Т.к. box_pack_2d псевдослучайный и может давать несколько результатов,
			# то итеративно отбираем лучшие
			_shuffle(boxes)
			pack_x, pack_y = _box_pack_2d(boxes)
			score = max(pack_x, pack_y)
			_log.info("Packing round: {0}, score: {1}...".format(rounds, score))
			if score >= best:
				continue
			for box in boxes:
				box[4].packed_norm = _Vector(tuple(box[i] / score for i in range(4)))
			best = score
		if best == _int_maxsize:
			raise AssertionError()
Exemple #7
0
    def __init__(self, batch_size, image_dir, shuffle_flag):
        self.images_dir = image_dir
        self.files = []
        self.shuffle_flag = shuffle_flag
        self.num_files = 0
        assert isinstance(shuffle_flag, bool)
        # Check which of the entries in the top directory are themselves directories.
        dirfiles = _os.listdir(image_dir)
        num_imgdirs = 0
        self.img_label_dict = dict(
        )  # storage denoting which label number corresponds with which label name.

        # NOTE: the below will only grab JPG/JPEG files, and would need to be modified to grab other types of image files.
        # NOTE: even if the below were modified to grab other types of image files, the DALI image processing pipeline
        # uses a JPEG decoder to load in the files, so just keep that in mind.
        for file in dirfiles:
            # Grab the name of every entry in the top directory.
            fullname = _os.path.join(image_dir, file)
            # If an entry is a directory, grab the filenames for all the JPG/JPEG files in that directory.
            if _os.path.isdir(fullname):
                imgfiles = _os.listdir(fullname)
                for imgfile in imgfiles:
                    thisimgpath = _os.path.join(fullname, imgfile)
                    if _os.path.isfile(thisimgpath) and (
                            thisimgpath.lower().endswith(".jpg")
                            or thisimgpath.lower().endswith(".jpeg")):
                        self.img_label_dict[thisimgpath] = num_imgdirs
                        self.files.append(thisimgpath)
                num_imgdirs += 1
        assert num_imgdirs > 0
        # Store the batch size.
        self.batch_size = batch_size
        # Shuffle the input filenames.
        if self.shuffle_flag:
            _shuffle(self.files)
	def test_height_after_random_set(self):
		data = list(range(2 * _getrecursionlimit()))
		size = len(data)
		_shuffle(data)
		t = self.cls()
		self.assertNode(t)
		for i in data:
			t._set(i, i)
			self.assertNode(t)
		self.assertLessEqual(t._root.height(), 2.0 * _log(size, 2))
Exemple #9
0
    def train(self, trainingSet, epochs=1, errorMin=0): 
        """ Trains the neural network from a training set using
            backpropgation algorithm from pg 251 of Alpaydin
        """
    
        if epochs < 1:
            raise ValueError, 'epochs must be at least 1'
    
        if errorMin < 0:
            raise ValueError, 'errorMin must be greater or equal to than 0'
    
        for epoch in range(epochs):
            
            #Should run through the training set in random order
            _shuffle(trainingSet)
        
            for example in trainingSet:
                x,r = self._transformEx(example)            
                Y,Z = self._propagateInput(x)
            
                #Calc change in hidden to output weights
                deltaV = [_scalorTimesVectors(self.lRate * (r[i] - Y[i]) , Z) \
                    for i in range(self.K)]
            
                #Calc change in input to hidden weights
                deltaW = []
            
                for h in range(0,self.H -1):
                    sumError = sum([((r[i] - Y[i]) * self.V[i][h]) \
                        for i in range(self.K)])
                
                 
                    scalar = self.lRate * sumError * Z[h] * (1 - Z[h])

                    wh = _scalorTimesVectors(scalar, x)
                
                    #now calc momentum
                    momentum = _scalorTimesVectors(self.mRate,self.lastDeltaW[h])
                
                    deltaW.append(_addVectors(wh,momentum))             
    
                #save deltaW for next iters momentum
                self.lastDeltaW = deltaW

                #apply changes to weights
                self.V = _addMats(self.V,deltaV)
                self.W = _addMats(self.W,deltaW)
            
            error = self.validate(trainingSet)[0]
            #if errorMin is 0 don't waste time validating
            if errorMin != 0 and error <= errorMin:
                return
            
            if self.aLearning:
                self._updateLearningRate(error)
Exemple #10
0
def random_samples(to_sample, n):
    """computes a list of n random subsets of to_sample"""
    step = len(to_sample) / n
    lamb = list(to_sample)  ### a helpless victim!!!
    lamb.reverse()  ### additional noise ;-)
    _shuffle(lamb)
    testing_sets = [None] * n
    for i in xrange(n - 1):
        testing_sets[i] = frozenset(lamb[i:i + step])
    testing_sets[n - 1] = frozenset(lamb[(n - 1) * step:])
    return testing_sets
Exemple #11
0
	def test_min_max(self):
		t = self.cls()
		self.assertNode(t)
		self.assertRaises(ValueError, t.min)
		self.assertRaises(ValueError, t.max)
		data = list(self.data)
		_shuffle(data)
		for item in data:
			t._set(item, ord(item))
			self.assertNode(t)
		self.assertEqual(min(data), t.min())
		self.assertEqual(max(data), t.max())
    def __init__(self, json_file, ddir, batch_size=16, shuffle=True):
        assert os.path.isdir(ddir)
        super(DataGenerator, self).__init__()
        self.ddir = ddir
        self.batch_size = batch_size
        self.examples = [json.loads(s) for s in open(json_file).readlines()]
        self.batch_num = (len(self.examples) + batch_size - 1) // batch_size

        with open(os.path.join(ddir, "params.json"), "r") as f:
            self.ID2path = json.load(f)["ID2path"]

        if shuffle:
            _shuffle(self.examples)
Exemple #13
0
def _new_game():
    global deck, dealer_card_frame, player_card_frame
    deck = list(cards)
    random._shuffle(deck)
    dealer_hand.clear()
    player_hand.clear()
    dealer_card_frame.destroy()
    dealer_card_frame = tkinter.Frame(card_frame, background="green")
    dealer_card_frame.grid(row=0, column=1, sticky='ew', rowspan=2)
    player_card_frame.destroy()
    player_card_frame = tkinter.Frame(card_frame, background="green")
    player_card_frame.grid(row=2, column=1, sticky='ew', rowspan=2)
    result_text.set("")
    start_game()
Exemple #14
0
def test_marker_func(fname, *args):
    block = tosdb.TOSDB_DataBlock(N,True)
    block.add_items(*ITEMS)
    block.add_topics(*TOPICS)   
    topics = list(TOPICS)    
    _shuffle(topics)
    for topic in topics:
        item = _choice(ITEMS)
        date_time = _choice([True,False])        
        passes = _randint(3,10)
        wait = int(MAX_SEC_PER_TEST/passes)
        print("+ TEST", fname, str((item,topic,date_time,passes,wait)))
        test(fname, block, (item, topic, date_time) + args, passes, wait)
    block.close()    
Exemple #15
0
	def train(self, trainingSet):	
		_shuffle(trainingSet)
		sumDeltaW = 0
		sumDeltaV = 0
		for example in trainingSet:
			x,r = self._transformEx(example)			
			
			Y = self._initY()
			Z = self._initZ()
			
			for h in range(1,self.H):
				Z[h] = _sigmoid(_mulVectors(self.W[h],x))
				#print Z[h]
			
			for i in range(0,self.K):
				Y[i] = _mulVectors(self.V[i],Z)
				
			deltaV = []	
			for i in range(self.K):
				deltaV.append(_constTimesVectors(self.lRate * (r[i] - Y[i]) , Z))
				
			deltaW = []
			
			for h in range(self.H):
				sumError = 0
				for i in range(self.K):
					sumError += (r[i] - Y[i]) * self.V[i][h]

				wh = _constTimesVectors(self.lRate * sumError * Z[h] * (1 - Z[h]), x)
				#now calc mommentum
				momentum = _constTimesVectors(self.mRate,self.lastDeltaW[h])
				deltaW.append(_addVectors(wh,momentum))
				
				
			self.lastDeltaW = deltaW

				
			for i in range(self.K):
				self.V[i] = _addVectors(self.V[i], deltaV[i])
				if self.V[i] == float('nan'):
					self.V[i] = 0
			for h in range(self.H):
				self.W[h] = _addVectors(self.W[h], deltaW[h])
				if self.W[h] == float('nan'):
					self.W[h] = 0
								
			sumDeltaW += _absSumMatrix(deltaW)
			sumDeltaV += _absSumMatrix(deltaV)
			
		return sumDeltaW/len(trainingSet), sumDeltaV/len(trainingSet)
Exemple #16
0
		def _s(l):
			_shuffle(l)
			for i in l:
				_shuffle(l)
				if isinstance(i, list):
					_shuffle(i)
					_s(i)
			_shuffle(l)
			return l
Exemple #17
0
    def get_data_label_pair(list_file, shuffle_data=False):
        filepath_list = []
        label_list = []
        with open(list_file) as f:
            for line in f:
                filepath, label = line.split()
                filepath_list.append(filepath)
                label_list.append(int(label))
        index_list = list(range(len(label_list)))

        if shuffle_data:
            c = list(zip(filepath_list, label_list, index_list))
            _shuffle(c)
            filepath_list, label_list, index_list = zip(*c)
            with open(list_file + '.shuffle.txt', 'w') as f:
                for item in c:
                    f.write('{} {}\n'.format(item[0], item[1]))
        return filepath_list, label_list, index_list
Exemple #18
0
	def test_sorting(self):
		t = self.cls()
		self.assertNode(t)
		data = list(self.data)
		_shuffle(data)
		for i in data:
			t._set(i, i)
			self.assertNode(t)
		data.sort()
		self.assertEqual(data, list(t))
		t = self.cls()
		self.assertNode(t)
		data = list(self.data)
		_shuffle(data)
		for i in data:
			t._set(i, i)
			self.assertNode(t)
		data.sort()
		self.assertEqual(list(reversed(data)), list(reversed(t)))
Exemple #19
0
def load_audio(path,
               with_path=True,
               recursive=True,
               ignore_failure=True,
               random_order=False):
    """
    Loads WAV file(s) from a path.

    Parameters
    ----------
    path : str
        Path to WAV files to be loaded.

    with_path : bool, optional
        Indicates whether a path column is added to the returned SFrame.

    recursive : bool, optional
        Indicates whether ``load_audio`` should do a recursive directory traversal,
        or only load audio files directly under ``path``.

    ignore_failure : bool, optional
        If True, only print warnings for failed files and keep loading the remaining
        audio files.

    random_order : bool, optional
        Load audio files in random order.

    Returns
    -------
    out : SFrame
        Returns an SFrame with either an 'audio' column or both an 'audio' and
        a 'path' column. The 'audio' column is a column of dictionaries.

        Each dictionary contains two items. One item is the sample rate, in
        samples per second (int type). The other item will be the data in a numpy
        array. If the wav file has a single channel, the array will have a single
        dimension. If there are multiple channels, the array will have shape
        (L,C) where L is the number of samples and C is the number of channels.

    Examples
    --------
    >>> audio_path = "~/Documents/myAudioFiles/"
    >>> audio_sframe = tc.audio_analysis.load_audio(audio_path, recursive=True)
    """
    from scipy.io import wavfile as _wavfile

    all_wav_files = []

    if _fnmatch(path, '*.wav'):  # single file
        all_wav_files.append(path)
    elif recursive:
        for (dir_path, _, file_names) in _os.walk(path):
            for cur_file in file_names:
                if _fnmatch(cur_file, '*.wav'):
                    all_wav_files.append(dir_path + '/' + cur_file)
    else:
        all_wav_files = _glob(path + '/*.wav')

    if random_order:
        _shuffle(all_wav_files)

    result_builder = _tc.SFrameBuilder(column_types=[dict, str],
                                       column_names=['audio', 'path'])
    for cur_file_path in all_wav_files:
        try:
            sample_rate, data = _wavfile.read(cur_file_path)
        except Exception as e:
            error_string = "Could not read {}: {}".format(cur_file_path, e)
            if not ignore_failure:
                raise _ToolkitError(error_string)
            else:
                print(error_string)
                continue

        result_builder.append([{
            'sample_rate': sample_rate,
            'data': data
        }, cur_file_path])

    result = result_builder.close()
    if not with_path:
        del result['path']
    return result
Exemple #20
0
    def __init__(self,
                 train_dir,
                 batch_size,
                 test_dir=None,
                 x_shape=(227, 227),
                 y_shape=None,
                 split=0.9,
                 name=None,
                 keep_grayscale=True,
                 shuffle=True):

        if name is None:
            self.name = os.path.basename(train_dir)
        else:
            self.name = name

        self._x_shape = tuple(x_shape)
        self._y_shape = x_shape if y_shape is None else tuple(y_shape)
        self._batch_size = batch_size

        # check if x is 2D
        self._input_2d = len(x_shape) == 2 or x_shape[2] == 1

        self._keep_grayscale = keep_grayscale

        # if we're only given one dataset path (i.e. train_dir), then we need to split the dataset
        if test_dir is None:
            datapaths = [
                os.path.join(train_dir, f) for f in os.listdir(train_dir)
            ]

            if shuffle:
                _shuffle(datapaths)

            split_index = int(len(datapaths) * split)
            self._training_paths = datapaths[:split_index]
            self._test_paths = datapaths[split_index:]
            self.num_batches = int(len(self._training_paths) / batch_size)

        # if we're given two dataset paths (i.e. train_dir + test_dir) then we do NOT need to split the dataset
        else:
            self._training_paths = [
                os.path.join(train_dir, f) for f in os.listdir(train_dir)
            ]
            self._test_paths = [
                os.path.join(test_dir, f) for f in os.listdir(test_dir)
            ]

            if shuffle:
                _shuffle(self._training_paths)
                _shuffle(self._test_paths)

            self.num_batches = int(len(self._training_paths) / batch_size)

        self._num_training_data = len(self._training_paths)
        self._num_test_data = len(self._test_paths)

        self._next_training_index = 0
        self._next_test_index = 0

        self._training_batch_q = Queue(maxsize=5)
        self._test_batch_q = Queue(maxsize=3)

        self._batch_training_thread = threading.Thread(
            target=self._fill_training_batch_q,
            name='t-dataset-fillTrainingQueue')
        self._batch_training_thread.start()

        self._batch_test_thread = threading.Thread(
            target=self._fill_test_batch_q, name='t-dataset-fillTestQueue')
        self._batch_test_thread.start()
Exemple #21
0
 def shuffle(self):
     self.mutex.acquire()
     _shuffle(self.queue)
     self.mutex.release()
Exemple #22
0
 def shuffle(self):
     _shuffle(self._cards, random=SystemRandom().random)
Exemple #23
0
	def shuffle(self,rp=False):
		k = _dc(self)
		[_shuffle(k) for i in lzint(_randrange(100))]
		if rp:
			super().__init__(_dc(k))
		return lzlist(k)
Exemple #24
0
	def shuffle(self):
		self.mutex.acquire()
		_shuffle(self.queue)
		self.mutex.release()
Exemple #25
0
	def shuffle(cls):
		arr = [k + cls._cards[k] for k in cls._cards]
		_shuffle(arr)
		cls._cards = {i[:2]: i[2:] for i in arr}
Exemple #26
0
button_frame = tkinter.Frame(mainWindow)
button_frame.grid(row=3, column=0, columnspan=3, sticky='w')

dealer_button = tkinter.Button(button_frame,
                               text="Dealer",
                               command=deal_dealer)
dealer_button.grid(row=0, column=0)

player_button = tkinter.Button(button_frame,
                               text="Player",
                               command=deal_player)
player_button.grid(row=0, column=1)

new_game_button = tkinter.Button(button_frame,
                                 text="New Game",
                                 command=new_game)
new_game_button.grid(row=0, column=2)

cards = []
_load_images(cards)

deck = list(cards)  # creates a new, separate list
random._shuffle(deck)

dealer_hand = []
player_hand = []

start_game()

mainWindow.mainloop()
Exemple #27
0
	def test_int_keys_rand_order(self):
		for i in range(len(self.data)):
			data = list(self.data[:i])
			_shuffle(data)
			self._int_keys(data)