Exemple #1
0
def train_test_val_split(records_list,
                         train=0.6,
                         test=0.2,
                         val=0.2,
                         seed=None):
    assert train + test + val == 1
    split = deepcopy(records_list)
    train_size, test_size, val_size = (
        round(len(split) * train),
        round(len(split) * test),
        round(len(split) * val),
    )
    train_size = len(split) - test_size - val_size

    if seed is not None:
        set_seed(seed)
    shuffle(split)
    train_set, val_set, test_set = (
        split[:train_size],
        split[train_size:(train_size + test_size)],
        split[(train_size + test_size):],
    )
    assert len(set(train_set).intersection(set(test_set))) == 0
    assert len(set(val_set).intersection(set(test_set))) == 0
    assert len(set(train_set).intersection(set(test_set))) == 0
    return train_set, val_set, test_set
Exemple #2
0
def train_dl(num_neutron,batch_size,epoch,X_train,y_train,X_test,y_test):
    """
    This function will allow us to train our deep learning model
    """
    import keras as K
    import numpy as np
    np.random.seed(1) # NumPy
    import random
    random.seed(2) # Python
    from tensorflow import random
    random.set_seed(3)



    model = tf.keras.Sequential([
        tf.keras.layers.Dense(num_neutron, activation='relu', input_shape=(1618,)),
        tf.keras.layers.Dense(14, activation='softmax')
        ])

    model.compile(optimizer=tf.keras.optimizers.Adam(5e-04),
                  loss=tf.keras.losses.CategoricalCrossentropy(),
                  metrics=[tf.keras.metrics.Precision(name='precision')])

    dataset = tf.data.Dataset.from_tensor_slices((X_train.values, y_train.values))
    train_dataset = dataset.shuffle(len(X_train)).batch(batch_size)

    dataset = tf.data.Dataset.from_tensor_slices((X_test.values, y_test.values))
    validation_dataset = dataset.shuffle(len(X_test)).batch(batch_size)

    print("Start training..\n")
    history = model.fit(train_dataset, epochs=epoch, validation_data=validation_dataset)
    print("Done.")
    return model
Exemple #3
0
 def set_seed(self, seedString):
     # Check arguments
     #   name
     seedString = exception.arg_check(seedString, str)
     # Set seed
     random.set_seed(random.seed_alphabet_decode(seedString))
     self.seed = seedString
def quiz_from_seed(seed, params):
    quiz={}
    set_seed(seed)    
    askbiggest = randint(0,1)==0
    print("biggest?",askbiggest)
    if askbiggest:
        quiz["comparison"]="biggest"
    else:
        quiz["comparison"] = "smallest"
    print(quiz["comparison"])
    try:
        measure=params.get("measure")
    except (AttributeError,TypeError):
        measure=None
    if measure==None or measure == "random":
        measure=choice(["extent", "count", "amount", "duration", "mass", "area"])

    quiz["measure"]=measure
    quiz["seed"] = seed
    rf = randomFact(NumberFact, measure, rseed=seed)
    bestComparisons, tolerance, score  = numberFactsLikeThis(NumberFact, rf, rseed=seed) 
    while len(bestComparisons)<4:
        seed = randint(0,10000000)
        rf = randomFact(NumberFact, measure, rseed=seed)
        bestComparisons, tolerance, score  = numberFactsLikeThis(NumberFact, rf, rseed=seed) 
    quiz["hint"] = rf.render
    quiz["options"]=bestComparisons
    return quiz
Exemple #5
0
def get_control(seq_array,
                chosen_base,
                step,
                flank_size,
                sample_indices=None,
                circle_range=None,
                seed=None):
    """returns control profile"""
    assert seed is not None, "Must provide a random number seed"
    set_seed(seed)
    if sample_indices is None:
        sample_indices = chosen_base_indices(seq_array, chosen_base, step)
        seq_array, sample_indices = filter_seqs_by_chosen_base(
            seq_array, sample_indices, 1)

    if circle_range is None:
        circle_range = MakeCircleRange(seq_array.shape[1], flank_size)

    sampled_indices = get_random_indices(sample_indices, circle_range)
    rows = []
    for i in range(len(seq_array)):
        row = seq_array[i].take(sampled_indices[i])
        rows.append(row)
    sampled_data = array(rows)
    return sampled_data
Exemple #6
0
    def __init__(self, subset, path_length=6, grayscale=False, seed=0, image_size=(150, 150), augmentation=None):
        super().__init__()
        self.grayscale = grayscale
        self.image_size = image_size
        self.augmentation = augmentation

        folders = {
            6: ['curv_baseline'],
            9: ['curv_contour_length_9'],
            14: ['curv_contour_length_14'],
            'all': ['curv_baseline', 'curv_contour_length_9', 'curv_contour_length_14'],
        }[path_length]
        self.base_paths = [join(self.data_path(), folder) for folder in folders]
        splits = list(range(1, 25))

        if seed != 0:
            set_seed(seed)
            shuffle(splits)

        if subset == 'train':
            a_range = splits[0:18]  # range(1, 19)
        elif subset == 'val':
            a_range = splits[18:20]  # range(19, 21)
        elif subset == 'test':
            a_range = splits[20:25]  # range(21, 25)
        else:
            raise ValueError(f'Invalid subset: {subset}')

        self.samples = [(a, b, pos, bp) for a in a_range for b in range(10000) for pos in [True, False] for bp in range(len(self.base_paths))]
        self.sample_ids = list(range(len(self.samples)))
Exemple #7
0
def generate_inputs(ninputs, seed=None):
    yield Int64.ZERO
    yield Int64.ONE
    yield Int64.MAX

    if seed is not None:
        set_seed(seed)

    for a in range(ninputs - 3):
        yield Int64.random()
Exemple #8
0
def get_rand_id_cons(layers, connections, seed=1):
    # Generate random connectivity
    n = len(layers)
    id_cons = [None] * (n - 1)
    set_seed(seed)
    for index, con_count in enumerate(connections):
        i = layers[index]  # number of gates in layer index
        j = layers[index + 1]  # number of gates in layer index + 1
        all_cons = list(product(range(i), range(j)))
        id_cons[index] = sample(all_cons, con_count)
    return id_cons
Exemple #9
0
def random_digraph(vertices=10000, max_arcs_per_node=100, acyclic=False, seed=None):
    from random import seed as set_seed, sample, randrange
    if seed is not None:
        set_seed(seed)
    n = vertices
    a = min(max_arcs_per_node, vertices)
    G = {}
    for v in xrange(n):
        population = xrange(v+1, n) if acyclic else xrange(n)
        sample_size = randrange(min(n-v, a)) if acyclic else randrange(a)
        G[v] = sample(population, sample_size)
    return G
Exemple #10
0
def get(limit, padding, orderby, seed=None):
    if seed is None:
        song_list = orm \
            .select(s for s in Song) \
            .order_by(format_order_by(orderby)) \
            .limit(limit=limit, offset=padding)
    else:
        # shuffle all results
        id_list = list(orm.select(s.id for s in Song))
        set_seed(a=seed, version=2)
        shuffle(id_list)
        song_list = orm.select(s for s in Song).where(
            lambda s: s.id in id_list[padding:padding + limit])

    return {'data': [s.serialize() for s in song_list]}, 200
Exemple #11
0
def sample_row_wise(indptr, indices, n_cols, n_samples, seed_seq):
    """
    For every row of a CSR matrix, samples indices not present in this row.
    """
    n_rows = len(indptr) - 1
    result = np.empty((n_rows, n_samples), dtype=indices.dtype)
    for i in prange(n_rows):
        head = indptr[i]
        tail = indptr[i + 1]
        seen_inds = indices[head:tail]
        state = prime_sampler_state(n_cols, seen_inds)
        remaining = n_cols - len(seen_inds)
        set_seed(seed_seq[i])
        sample_fill(n_samples, state, remaining, result[i, :])
    return result
Exemple #12
0
def get_rand_circuit_id_cons(layers, connections, seed=1):
    # Generate random connectivity constrained to two incoming connections per
    # gate (i.e. assuming two-input gates)
    n = len(layers)
    id_cons = [None] * (n - 1)
    set_seed(seed)
    for ind in range(1, n):
        gates = layers[ind]
        prev_gates = range(layers[ind - 1])
        layer_cons = []
        for gate in range(gates):
            for src in sample(prev_gates, 2):
                layer_cons.append((src, gate))
        id_cons[ind - 1] = layer_cons
    return id_cons
Exemple #13
0
def audit(decision_fn, num_scenarios=100000, seed=None):
    log_file = get_log_file(decision_fn.__name__)
    if seed is not None:
        set_seed(seed)
    for _ in range(num_scenarios):
        scenario = Scenario(youInCar=False,
                            legalCrossing=False,
                            pedsInLane=True)
        decision = decision_fn(scenario)
        if decision not in ['passengers', 'pedestrians']:
            print(scenario)
            message = 'Expected "passengers" or "pedestrian", '
            message += 'but got "{}" instead'.format(decision)
            raise ValueError(message)
        log_scenario(log_file, scenario, decision)
    calculate_stats(log_file)
    def __init__(self,
                 subset,
                 difficulty=0,
                 grayscale=False,
                 seed=0,
                 augmentation=None):
        super().__init__()
        self.grayscale = grayscale
        self.difficulty = difficulty
        self.augmentation = augmentation

        folders = {
            0: ['baseline-/media/data_cifs/cluttered_nist3/baseline-/'],
            1: ['ix1-/media/data_cifs/cluttered_nist3/ix1-/'],
            3: ['ix2/media/data_cifs/cluttered_nist3/ix2/'],
            'all': [
                'baseline-/media/data_cifs/cluttered_nist3/baseline-/',
                'ix1-/media/data_cifs/cluttered_nist3/ix1-/',
                'ix2/media/data_cifs/cluttered_nist3/ix2/'
            ],
        }[difficulty]
        self.base_paths = [
            join(self.data_path(), folder) for folder in folders
        ]
        splits = list(range(1, 51))

        if seed != 0:
            set_seed(seed)
            shuffle(splits)

        if subset == 'train':
            a_range = splits[0:36]  # range(1, 19)
        elif subset == 'val':
            a_range = splits[36:40]  # range(19, 21)
        elif subset == 'test':
            a_range = splits[40:51]  # range(21, 25)
        else:
            raise ValueError(f'Invalid subset: {subset}')

        self.samples = [(a, b, bp) for a in a_range for b in range(4000)
                        for bp in range(len(self.base_paths))]
        self.labels = [
            np.load(join(self.base_paths[0],
                         f'metadata/{i}.npy'))[:, [0, 2, 4]].astype('U13')
            for i in range(1, 51)
        ]
        self.sample_ids = list(range(len(self.samples)))
Exemple #15
0
def basic_hills(x, height, seed):
	set_seed(seed)
	cs = x * 10
	xr = xrange(cs, cs+10)
	chunk = {}
	for x in xr:
		for y in xrange(height):
			top = noise1D(x, seed)
			if y == top:
				chunk[x, y] = "G"
			elif y > top:
				chunk[x, y] = "K"
			elif top-y < rand(3, 7):
				chunk[x, y] = "D"
			else:
				chunk[x, y] = "S"
	return chunk
Exemple #16
0
def sample_element_wise(indptr, indices, n_cols, n_samples, seed_seq):
    """
    For every nnz entry of a CSR matrix, samples indices not present
    in its corresponding row.
    """
    result = np.empty((indptr[-1], n_samples), dtype=indices.dtype)
    for i in prange(len(indptr) - 1):
        head = indptr[i]
        tail = indptr[i + 1]

        seen_inds = indices[head:tail]
        state = prime_sampler_state(n_cols, seen_inds)
        remaining = n_cols - len(seen_inds)
        set_seed(seed_seq[i])
        for j in range(head, tail):
            sampler_state = state.copy()
            sample_fill(n_samples, sampler_state, remaining, result[j, :])
    return result
Exemple #17
0
def mf_random_item_scoring(user_factors, item_factors, indptr, indices, size,
                           seedseq, res):
    """
    Calculate matrix factorization scores over a sample of random items
    excluding the already observed ones.
    """
    num_items, rank = item_factors.shape
    for i in prange(len(indptr) - 1):
        head = indptr[i]
        tail = indptr[i + 1]
        observed = indices[head:tail]
        user_coef = user_factors[i, :]
        set_seed(seedseq[i])  # randomization control for sampling in a thread
        for j, rnd_item in enumerate(sample_unseen(num_items, size, observed)):
            item_coef = item_factors[rnd_item, :]
            tmp = 0
            for k in range(rank):
                tmp += user_coef[k] * item_coef[k]
            res[i, j] = tmp
Exemple #18
0
    def __init__(self, x, y, width, size,
                 osc_url, osc_port,
                 seed=None,
                 border_color=(255, 255, 255), background_color=(0, 0, 0), padding=10):
        """
        Class constructor
        :param x: x position in pixels of the upper left corner on theater window
        :param y: y position in pixels of the upper left corner on theater window
        :param width: width in pixels of stage
        :param size: size in cells of stage
        :param osc_url: URL used to reach OSC listener
        :param osc_port: port used to reach OSC listener
        :param seed: a number used to seed random values - may be used to repeat same sequence over and over
        :param border_color: border color of stage as a RGB triplet
        :param background_color: background color of stage as a RGB triplet
        :param padding: padding in pixels between cells
        """
        
        # Store class properties
        self._x = x
        self._y = y
        self._width = width
        self._size = size
        self._osc_url = osc_url
        self._osc_port = osc_port
        self._seed = seed
        self._border_color = border_color
        self._background_color = background_color
        self._padding = padding

        # Store different instruments added to this stage
        self._instruments = []

        # Compute cell width in pixels (we don't round to avoid calculation errors - is done further
        self._cell_width = width / size - padding / 2

        # Initiate OSC client
        self._osc_client = Osc_client()

        # Initialize random seed for eventual reproducibility
        set_seed(seed)
    def __init__(self, seed, n, m, sample_increment_size):
        """ Initializes a :class:`SimulatedSenateElection` object.

        The number of seats in a simulated senate election is equal to the floor of the number of candidates in the
            election divided by two.

        :param int seed: The starting value for the random number generator.
        :param int n: The total number of ballots cast in the election.
        :param int m: The total number of candidates in the election.
        :param int sample_increment_size: The number of ballots to add to the growing sample during each audit stage.
        """
        super(SimulatedSenateElection, self).__init__()
        self._n = n
        self._m = m
        self._seats = int(self._m / 2)
        self._candidates = list(range(1, self._m + 1))
        self._candidate_ids = list(range(1, self._m + 1))
        self._election_id = SimulatedSenateElection.DEFAULT_ID.format(
            asctime(localtime()))
        self._sample_increment_size = sample_increment_size
        set_seed(seed)  # Set the initial value of the RNG.
Exemple #20
0
    def _setseed(self, options):
        """get a seed if the seed is not given
		 set the seed for the random numbers generator"""
        # check if the seed has been already set (by a child, before calling the super init)
        if hasattr(self, '_seed'):
            return self._seed
        if 'seed' not in options or not options['seed']:
            set_seed(
                None
            )  # (from doc):  If seed is omitted or None, current system time is used
            seed = randint(0, 16777215)  # between 0 and 2^24-1
        else:
            try:
                seed = int(options['seed'], 0)
                if not 0 <= seed <= 16777215:
                    raise ValueError(
                        "The 'seed' value must be between 0 and 16777215 ('seed=%s'."
                        % options['seed'])
            except ValueError:
                raise ValueError("The 'seed' value is invalid ('seed=%s')" %
                                 options['seed'])
        set_seed(seed)
        return seed
Exemple #21
0
def find_samples_to_remove(ped_fh,
                           kin0_fh,
                           kin_fh,
                           relatedness_threshold,
                           distant_relatedness_threshold,
                           output_fh,
                           coverage_summary_fh=None,
                           seed=None,
                           verbose=False):
    if output_fh is sys.stdout:
        log_fh = sys.stderr
    else:
        log_fh = open(os.path.splitext(output_fh.name)[0] + ".log", "w")
    try:
        if seed is not None:
            set_seed(seed)
        phenotypes, ped_lines = process_ped_file(ped_fh, log_fh, verbose)
        global all_graphs
        kinship_files = [kin0_fh, kin_fh]
        all_graphs = process_kinship_file(kinship_files, relatedness_threshold,
                                          distant_relatedness_threshold,
                                          phenotypes, log_fh, verbose)
        (affecteds_related_graph, affecteds_unrelated_graph,
         mixed_related_graph, mixed_unrelated_graph,
         mixed_affecteds_related_graph, mixed_affecteds_unrelated_graph,
         unaffecteds_related_graph, unaffecteds_unrelated_graph) = all_graphs
        break_ties_with_coverage = bool(coverage_summary_fh)
        if break_ties_with_coverage:
            coverage_by_sample = process_coverage_summary_file(
                coverage_summary_fh, log_fh, verbose)
        else:
            coverage_by_sample = None

        samples_to_remove = []
        samples_to_remove.extend(
            remove_samples(affecteds_related_graph, [
                affecteds_unrelated_graph, mixed_affecteds_related_graph,
                mixed_affecteds_unrelated_graph
            ],
                           log_fh,
                           coverage_by_sample=coverage_by_sample,
                           verbose=verbose))
        samples_to_remove.extend(
            remove_samples(unaffecteds_related_graph, [
                mixed_related_graph, mixed_unrelated_graph,
                unaffecteds_unrelated_graph
            ],
                           log_fh,
                           coverage_by_sample=coverage_by_sample,
                           verbose=verbose))
        samples_to_remove.extend(
            remove_samples(
                mixed_related_graph,
                [mixed_unrelated_graph, unaffecteds_unrelated_graph],
                log_fh,
                coverage_by_sample=coverage_by_sample,
                verbose=verbose))
        if verbose:
            log_fh.write(
                "Pruning finished; will be removing {} samples:\n".format(
                    len(samples_to_remove)))
            for sample in samples_to_remove:
                log_fh.write("{}\n".format(sample))
            log_fh.write("\n")
        samples_to_remove = set(samples_to_remove)
        for line_fields in ped_lines:
            if line_fields[1] not in samples_to_remove:
                output_fh.write("\t".join(line_fields) + "\n")
    finally:
        if output_fh is not sys.stdout:
            output_fh.close()
        if log_fh is not sys.stderr:
            log_fh.close()
Exemple #22
0
# Reducing layer width
def reduce_width(neurons, reduce_rate, power):
    return (max(int(neurons * reduce_rate**power), 5))


# best parameters from above
dropout = 0.3
neurons = 500
red_rate = 0.3
constraint = 4
mom = 0.9
learning_rate = 0.01
seed = 1

set_seed(seed)

model = Sequential()

model.add(
    Dense(reduce_width(neurons, red_rate, 0),
          input_shape=(input_dim, ),
          kernel_constraint=MaxNorm(constraint)))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(dropout))

model.add(
    Dense(reduce_width(neurons, red_rate, 1),
          kernel_constraint=MaxNorm(constraint)))
model.add(BatchNormalization())
Exemple #23
0
	def __init__(self, player1, player2, tournament=None, **options):
		"""
		Create a Game
		Parameters:
		- player1, player2: two Player (the order will be changed according who begins)
		- options: dictionary of options
			- 'seed': seed of the labyrinth (same seed => same labyrinth); used as seed for the random generator
			- 'timeout': timeout of the game (if not given, the default timeout is used)
			- 'start': who starts the game (0, 1 or -1); random when not precised or '-1'
			# TODO: add a delay/pause option (in second)
		"""

		# check if we can create the game (are the players available)
		if player1 is None or player2 is None:
			raise ValueError("Players doesn't exist")
		if player1 is player2:
			raise ValueError("Cannot play against himself")
		if player1.game is not None or player2.game is not None:
			raise ValueError("Players already play in a game")

		# players
		# we randomly decide the order of the players
		if 'start' not in options:
			pl = choice((0, 1))
		else:
			try:
				pl = int(options['start'])
				if pl == -1:
					pl = choice((0, 1))
			except ValueError:
				raise ValueError("The 'start' option must be '0', '1' or '-1'")
		self._players = (player1, player2) if pl == 0 else (player2, player1)



		# get a seed if the seed is not given; seed the random numbers generator
		if 'seed' not in options:
			set_seed(None)  # (from doc):  If seed is omitted or None, current system time is used
			seed = randint(0, 16777215)     # between 0 and 2^24-1
		else:
			try:
				seed = int(options['seed'])
				if not 0 <= seed <= 16777215:
					raise ValueError("The 'seed' value must be between 0 and 16777215 ('seed=%s'." % options['seed'])
			except ValueError:
				raise ValueError("The 'seed' value is invalid ('seed=%s')" % options['seed'])
		set_seed(seed)


		# (unique) name composed by
		# - the first 6 characters are the seed (in hexadecimal),
		# - the 6 next characters are hash (CRC24) of the time and names (hexadecimal)
		ok = False
		name = ""
		while not ok:   # we need a loop just in case we are unlucky and two existing games have the same hash
			fullName = str(int(time())) + player1.name + player2.name
			name = hex6(seed)[2:] + hex6(crc24(bytes(fullName, 'utf8')))[2:]
			ok = name not in self.allInstances
			if not ok:
				timemod.sleep(1)

		# store the tournament
		self._tournament = tournament

		# determine who starts (player #0 ALWAYS starts)
		self._whoPlays = 0

		# last move
		self._lastMove = ""
		self._lastReturn_code = 0

		# set a delay after each move (to let the time to see the party)
		if 'delay' not in options:
			self._delay = 0
		else:
			try:
				self._delay = int(options['delay'])
			except ValueError:
				self._delay = 0
				# raise ValueError("The 'delay' value is invalid ('delay=%s')" % options['delay'])

		# time out for the move
		if 'timeout' not in options:
			self._timeout = TIMEOUT_TURN
		else:
			try:
				self._timeout = int(options['timeout'])
			except ValueError:
				raise ValueError("The 'timeout' value is invalid ('timeout=%s')" % options['timeout'])
		# timestamp of the last move
		self._lastMoveTime = datetime.now()     # used for the timeout when one player is a non-regular player

		# Barrier used for the synchronization of the two players (during playMove and getMove)
		self._sync = Barrier(2, timeout=self._timeout)

		# list of comments
		self._comments = CommentQueue(MAX_COMMENTS)

		# and (almost) last, call the super init for base initialization
		super().__init__(name)

		# advertise the players that they enter in a game
		player1.game = self
		player2.game = self

		# log the game
		self.logger.info("=================================")
		if self._tournament:
			self.logger.message("[Tournament %s] Game %s just starts with '%s' and '%s' (seed=%d).",
			                    self._tournament.name, name, player1.name, player2.name, seed)
		else:
			self.logger.message("Game %s just starts with '%s' and '%s' (seed=%d).", name, player1.name, player2.name, seed)
		self.logger.debug("The delay is set to %ds" % self._delay)
		self.logger.debug("The timeout is set to %ds" % self._timeout)
Exemple #24
0
 def set_seed_value(self):
     set_seed(self.seed_buffer)
def audit(election,
          seed,
          unpopular_freq_threshold,
          stage_counter=0,
          alpha=0.05,
          trials=100,
          quick=False):
    """ Runs a Bayesian audit on the given senate election.

    :param :class:`BaseSenateElection` election: The senate election to audit.
    :param int seed: The seed for the random number generator.
    :param float unpopular_freq_threshold: The upper bound on the frequency of trials a candidate is elected in order
        for the candidate to be deemed unpopular.
    :param int stage_counter: The current audit stage (default: 0).
    :param float alpha: The error tolerance for the given audit (default: 0.05).
    :param int trials: The number of trials performed per sample (default: 100).
    :param bool quick: A boolean indicating whether the audit should run to completion (True) or only run one stage
        (False) (default: False).
    """
    print(
        'Audit of {} election.\n'.format(election.get_type()),
        '  Election ID: {}\n'.format(election.get_election_id()),
        '  Candidates: {}\n'.format(election.get_candidates()),
        '  Number of ballots cast: {}\n'.format(
            election.get_num_cast_ballots()),
        '  Number of seats being contested: {}\n'.format(
            election.get_num_seats()),
        '  Number of trials per sample: {}\n'.format(trials),
        '  Random number seed: {}'.format(seed),
    )
    start_time = time()
    set_seed(seed)

    # Cast one "prior" ballot for each candidate to establish a Bayesian prior. The prior ballot is a length-one partial
    # ballot with just a first choice vote for that candidate.
    for cid in election.get_candidate_ids():
        election.add_ballot((cid, ), 1)

    # Mapping from candidates to the set of ballots that elected them.
    candidate_to_ballots_map = {}
    candidate_outcomes = None

    done = False
    while True:

        stage_counter += 1
        election.draw_ballots()  # Increase sample of cast ballots.
        print(
            '\nAudit stage number: {}\n'.format(stage_counter),
            '  Sample size (including prior ballots): {}\n'.format(
                election.get_num_ballots_drawn()),
        )

        # -- Run trials in a Bayesian manner --
        # Each outcome is a tuple of candidates who have been elected in lexicographical order (NOT the order in which
        # they were elected).
        print(
            '  Performing {} Bayesian trials (posterior-based election simulations) in this stage.'
            .format(trials))

        outcomes = []
        for _ in range(trials):
            new_ballot_weights = get_new_ballot_weights(
                election, election.get_num_cast_ballots())
            outcome = election.get_outcome(new_ballot_weights)
            for cid in outcome:
                if cid not in candidate_to_ballots_map:
                    candidate_to_ballots_map[cid] = new_ballot_weights
            outcomes.append(outcome)

        best, freq = Counter(outcomes).most_common(1)[0]
        print(
            '  Most common outcome ({} seats):\n'.format(
                election.get_num_seats()),
            '  {}\n'.format(best),
            '  Frequency of most common outcome: {} / {}'.format(freq, trials),
        )

        candidate_outcomes = Counter(chain(*outcomes))
        print(
            '  Fraction present in outcome by candidate:\n  {}'.format(
                ', '.join([
                    '{}: {}'.format(str(cid), cid_freq / trials)
                    for cid, cid_freq in sorted(candidate_outcomes.items(),
                                                key=lambda x: (x[1], x[0]))
                ]), ), )
        if freq >= trials * (1 - alpha):
            print(
                'Stopping because audit confirmed outcome:\n',
                '  {}\n'.format(best),
                'Total number of ballots examined: {}'.format(
                    election.get_num_ballots_drawn()),
            )
            done = True
            break

        if election.get_num_ballots_drawn() >= election.get_num_cast_ballots():
            print('Audit has looked at all ballots. Done.')
            done = True
            break

        if not quick:
            break

    if candidate_outcomes is not None and done:
        for cid, cid_freq in sorted(candidate_outcomes.items(),
                                    key=lambda x: (x[1], x[0])):
            if cid_freq / trials < unpopular_freq_threshold:
                print(
                    '  One set of ballots that elected low frequency '
                    'candidate {} which occurred in {}% of outcomes\n'.format(
                        str(cid), str(cid_freq)),
                    '  {}'.format(candidate_to_ballots_map[cid]),
                )

    print('Elapsed time: {} seconds.'.format(time() - start_time))
    return done
Exemple #26
0
    def __init__(self, n, sealevel=0.5, seed=None):
        self.sealevel = sealevel

        # generate an evenly spaced triagonal grid of points,
        # jittered for randomness
        if (seed != None):
            set_seed(seed)

        m = int(2 * n / (3**0.5)) + 2
        if m % 2 == 0:  # force odd m
            m = m + 1
        s = 1. / (n - 1)
        h = (3**0.5) * s / 2

        nodes = []
        for y in range(m):
            row = []
            k = y % 2
            for x in range(n + k):
                px = s * x - 0.5 * s * k + s * (random() - 0.5)
                py = h * y - h + h * (random() - 0.5)
                row.append(node(px, py, 0))
            nodes.append(row)

        # build graph
        self.graph = {}

        # ...starting with the corners
        self.graph[nodes[0][0]] = (nodes[1][0], nodes[0][1], nodes[1][1])
        self.graph[nodes[-1][0]] = (nodes[-2][0], nodes[-2][1], nodes[-1][1])
        self.graph[nodes[0][-1]] = (nodes[0][-2], nodes[1][-2], nodes[1][-1])
        self.graph[nodes[-1][-1]] = (nodes[-1][-2], nodes[-2][-2],
                                     nodes[-2][-1])

        #next, the edges
        # sides
        for y in range(1, m - 1):
            if y % 2 == 0:
                # even left
                self.graph[nodes[y][0]] = (nodes[y + 1][0], nodes[y + 1][1],
                                           nodes[y][1], nodes[y - 1][1],
                                           nodes[y - 1][0])
                # even right
                self.graph[nodes[y][-1]] = (nodes[y + 1][-2], nodes[y + 1][-1],
                                            nodes[y - 1][-1], nodes[y - 1][-2],
                                            nodes[y][-2])
            else:
                # odd left
                self.graph[nodes[y][0]] = (nodes[y + 1][0], nodes[y][1],
                                           nodes[y - 1][0])
                # odd right
                self.graph[nodes[y][-1]] = (nodes[y + 1][-1], nodes[y][-2],
                                            nodes[y - 1][-1])

        # top & bottom
        for x in range(1, n - 1):
            # bottom
            self.graph[nodes[0][x]] = (nodes[0][x - 1], nodes[1][x],
                                       nodes[1][x + 1], nodes[0][x + 1])
            # bottom
            self.graph[nodes[-1][x]] = (nodes[-1][x - 1], nodes[-2][x],
                                        nodes[-2][x + 1], nodes[-1][x + 1])

        # the bulk of the graph
        for y in range(1, m - 1):
            k = y % 2
            for x in range(1, n + k - 1):
                self.graph[nodes[y][x]] = (nodes[y - 1][x - k],
                                           nodes[y - 1][x + 1 - k],
                                           nodes[y][x - 1], nodes[y][x + 1],
                                           nodes[y + 1][x - k],
                                           nodes[y + 1][x + 1 - k])
def set_seed(SEED =2031):
    os.environ['TF_DETERMINISTIC_OPS'] = '1'
    os.environ['PYTHONHASHSEED']=str(SEED)
    np.random.seed(SEED)
    random.set_seed(SEED)
# Transform the training data
X_train = sc.fit_transform(X_train)
X_train = pd.DataFrame(X_train, columns=X_test.columns)
# Transform the testing data
X_test = sc.transform(X_test)
X_test = pd.DataFrame(X_test, columns = X_train.columns)

# Import the relevant Keras libraries
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
From tensorflow import random

# Initiate the Model with Sequential Class
np.random.state(seed)
random.set_seed(seed)
model = Sequential()

# Add the hidden dense layers and with dropout Layer
model.add(Dense(units=64, activation='relu', kernel_initializer='uniform', input_dim=X_train.shape[1]))
model.add(Dropout(rate=0.5))
model.add(Dense(units=32, activation='relu', kernel_initializer='uniform', input_dim=X_train.shape[1]))
model.add(Dropout(rate=0.4))
model.add(Dense(units=16, activation='relu', kernel_initializer='uniform', input_dim=X_train.shape[1]))
model.add(Dropout(rate=0.3))
model.add(Dense(units=8, activation='relu', kernel_initializer='uniform', input_dim=X_train.shape[1]))
model.add(Dropout(rate=0.2))
model.add(Dense(units=4, activation='relu', kernel_initializer='uniform'))
model.add(Dropout(rate=0.1))

Exemple #29
0
def random_seed(length=16):
    set_seed(binascii.b2a_hex(os.urandom(length)))
    return binascii.b2a_hex(os.urandom(length))
Exemple #30
0
def main(dataset='omniglot',
         n=5,
         k=5,
         trainsize=None,
         valsize=None,
         epochs=200,
         batch_size=32,
         lr=10e-4,
         random_rotation=True,
         seed=13,
         force_download=False,
         device='cuda',
         use_tensorboard=True,
         eval_test=True,
         track_loss_freq=1,
         track_weights=True,
         track_weights_freq=100,
         load_weights=True,
         evalength=None,
         trainpbar=True):
    """
    Download the dataset if not present and train SNAIL (Simple Neural Attentive Meta-Learner).
    When training is successfully finished, the embedding network weights and snail weights are saved, as well
    the path of classes used for training/test in train_classes.txt/test_classes.txt
    :param dataset: Dataset used for training,  can be only {'omniglot', 'miniimagenet'} (defuult 'omniglot')
    :param n: the N in N-way in meta-learning i.e. number of class sampled in each row of the dataset (default 5)
    :param k: the K in K-shot in meta-learning i.e. number of observations for each class (default 5)
    :param trainsize: [omniglot-only] number of class used in training (default 1200) while the remaining classes are for test.
    :param epochs: times that model see the dataset (default 200)
    :param batch_size: size of a training batch (default 32)
    :param random_rotation: :bool rotate the class images by multiples of 90 degrees (default True)
    :param seed: seed for reproducibility (default 13)
    :param force_download: :bool redownload data even if folder is present (default True)
    :param device: : device used in pytorch for training, can be "cuda*" or "cpu" (default 'cuda')
    :param use_tensorboard: :bool save metrics in tensorboard (default True)
    :param eval_test: :bool after test_loss_freq batch calculate loss and accuracy on test set (default True)
    :param track_loss_freq: :int epoch frequency of loss/accuracy saving inside tensorboard (default 1)
    :param track_weights: :bool when True log parameters histogram inside tensorboard (default True)
    :param track_weights_freq: :int steps frequency of saving parameters and gradients histograms inside tensorboard (default 100)
    :param load_weights: :bool if available load under model_weights snail and embedding network weights (default True)
    """
    assert dataset in ['omniglot', 'miniimagenet']
    assert device.startswith('cuda') or device == 'cpu'
    if not torch.cuda.is_available():
        print('Warning: cuda is not available, fall back to cpu')
        device = 'cpu'
    np.random.seed(seed)
    set_seed(seed)
    if dataset == 'omniglot':
        dataloader = OmniglotDataLoader(batch_size, n, k, device)
    else:
        dataloader = MiniImagenetDataLoader(batch_size, n, k, device)
    model = SnailTrain(n,
                       k,
                       dataset,
                       device=device,
                       track_loss=use_tensorboard,
                       track_layers=track_weights and use_tensorboard,
                       track_loss_freq=track_loss_freq,
                       track_params_freq=track_weights_freq,
                       random_rotation=random_rotation,
                       lr=lr,
                       trainpbar=trainpbar)
    if load_weights:
        model.load_if_exists()
    model.train(epochs, dataloader.train_dataloader(),
                dataloader.val_dataloader(), trainsize, valsize)
Exemple #31
0
def quiz(request):
    params = request.POST
    try:
        seed = num(params.get("seed"))
    except (AttributeError, TypeError):
        set_seed()
        seed = randint(0, 10000000)
    if seed == None:
        set_seed()
        seed = randint(0, 10000000)
    set_seed(seed)
    try:
        cycle = params.get("cycle")
    except (AttributeError, TypeError):
        cycle = "initial"

    askbiggest = randint(0, 1) == 0
    try:
        measure = params.get("measure")
    except (AttributeError, TypeError):
        measure = None
    if measure == None or measure == "random":
        measure = choice(["extent", "count", "amount", "duration", "mass"])

    quiz = {}
    if askbiggest:
        if measure == "extent":
            quiz["question"] = "Which of these is the biggest?"
        elif measure == "count":
            quiz["question"] = "Which of these is the most numerous?"
        elif measure == "amount":
            quiz["question"] = "Which of these is the greatest amount?"
        elif measure == "duration":
            quiz["question"] = "Which of these is the longest period of time?"
        else:
            quiz["question"] = "Which of these has the greatest mass?"
    else:
        if measure == "extent":
            quiz["question"] = "Which of these is the smallest?"
        elif measure == "count":
            quiz["question"] = "Which of these is the least numerous?"
        elif measure == "amount":
            quiz["question"] = "Which of these is the smallest amount?"
        elif measure == "duration":
            quiz["question"] = "Which of these is the shortest period of time?"
        else:
            quiz["question"] = "Which of these has the least mass?"
    quiz["measure"] = measure
    quiz["seed"] = seed
    rf = randomFact(NumberFact, measure, rseed=seed)
    bestComparisons, tolerance, score = numberFactsLikeThis(NumberFact,
                                                            rf,
                                                            rseed=seed)
    while len(bestComparisons) < 4:
        seed = randint(0, 10000000)
        rf = randomFact(NumberFact, measure, rseed=seed)
        bestComparisons, tolerance, score = numberFactsLikeThis(NumberFact,
                                                                rf,
                                                                rseed=seed)
    quiz["hint"] = rf.render
    quiz["options"] = bestComparisons
    if askbiggest:
        answer = biggestNumberFact(bestComparisons)
    else:
        answer = smallestNumberFact(bestComparisons)
    quiz["answer"] = answer.title
    if request.method == "POST":
        response = request.POST
        if response.get("option") == quiz["answer"] and cycle == "answered":
            quiz["assessment"] = str(
                response.get("option")) + " is the correct answer: Well done!"
            #quiz["question"]=""
            reveal = []
            for option in bestComparisons:
                reveal.append({
                    "title": option.render_folk,
                    "link": option.link
                })
            quiz["options"] = reveal
            quiz["cycle"] = "correct"
        elif cycle == "answered":
            quiz["assessment"] = str(
                response.get("option")) + " is not correct. Try again."
    else:
        pass


#        form = FactForm()
#   return render(request, 'blog/fact_edit.html', {'form': form})
    dyk = spuriousFact(NumberFact, 3, measure=measure)
    return render(request, 'blog/quiz.html', {
        'quiz': quiz,
        'quote': choice(quotes),
        "dyk": dyk
    })
Exemple #32
0
def random_seed(length=16):
	set_seed(binascii.b2a_hex(os.urandom(length)))
	return binascii.b2a_hex(os.urandom(length))
def quiz(request):
    params = request.POST
    if len(params)==0:
        params = request.GET
    abs_uri = request.build_absolute_uri()            
    protocol, uri = abs_uri.split("://")
    site = protocol+"://"+uri.split("/")[0]+"/"
    try:
        cycle=params.get("cycle")
    except (AttributeError,TypeError):
        cycle="initial"
    try:
        force_reveal=params.get("reveal")=="true"
    except (AttributeError,TypeError):
        force_reveal=False
    try:
        saveas=params.get("saveas")
    except (AttributeError,TypeError):
        saveas=None

    try:
        spec=request.GET.get("spec")
        if spec==None:
            spec=params.get("spec")
        quiz = quiz_from_spec(spec)
    except (AttributeError):
        spec = None
    if spec == None:
        try:
            seed=num(params.get("seed"))
        except (AttributeError,TypeError):
            set_seed()
            seed = randint(0,10000000)
        if seed == None:
            set_seed()
            seed = randint(0,10000000)
        quiz = quiz_from_seed(seed, params)
        spec = make_spec(quiz["options"], quiz["comparison"], quiz["measure"])

    measure = quiz["measure"]
    if quiz["comparison"]=="biggest":
        if measure=="extent":
            quiz["question"]="Which of these is the biggest?"
        elif measure=="count":
            quiz["question"]="Which of these is the most numerous?"
        elif measure=="amount":
            quiz["question"]="Which of these is the greatest amount?"
        elif measure=="duration":
            quiz["question"]="Which of these is the longest period of time?"
        elif measure=="volume":
            quiz["question"]="Which of these has the greatest volume?"
        elif measure=="area":
            quiz["question"]="Which of these has the greatest area?"
        else:
            quiz["question"]="Which of these has the greatest mass?"
    else:
        if measure=="extent":
            quiz["question"]="Which of these is the smallest?"
        elif measure=="count":
            quiz["question"]="Which of these is the least numerous?"
        elif measure=="amount":
            quiz["question"]="Which of these is the smallest amount?"
        elif measure=="volume":
            quiz["question"]="Which of these has the least volume?"
        elif measure=="area":
            quiz["question"]="Which of these has the least area?"
        elif measure=="duration":
            quiz["question"]="Which of these is the shortest period of time?"
        else:
            quiz["question"]="Which of these has the least mass?"
    permalink = site+"quiz/?spec="+spec
    if force_reveal:
        permalink+="&reveal=true"
    if saveas:
        poke_link(permalink, saveas)
    quiz["spec"]=spec
    if quiz["comparison"]=="biggest":
        answer = biggestNumberFact(quiz["options"])
    else: 
        answer = smallestNumberFact(quiz["options"])
    quiz["answer"]=answer.title
    if request.method == "POST":
        response = request.POST
        if response.get("option")==quiz["answer"] and cycle=="answered":
            quiz["assessment"] = str(response.get("option"))+" is the correct answer: Well done!"
            #quiz["question"]=""
            reveal = []
            for option in quiz["options"]:
                reveal.append({"title":option.render_folk, "link":option.link})
            quiz["options"]=reveal
            quiz["cycle"]="correct"
        elif cycle=="answered":
            quiz["assessment"] = str(response.get("option"))+" is not correct. Try again."
    if request.method == "GET":
        if force_reveal:
            reveal = []
            for option in quiz["options"]:
                reveal.append({"title":option.render_folk, "link":option.link})
            quiz["assessment"] = quiz["answer"]+" is the correct answer."
            quiz["options"]=reveal

    else:   
        pass
#        form = FactForm()
 #   return render(request, 'blog/fact_edit.html', {'form': form})   
    dyk=spuriousFact(NumberFact,3,measure=quiz["measure"])
    promote = choice(["sponsor","donate"])
    return render(request, 'blog/quiz.html', {'quiz':quiz, 'permalink':permalink, 'quote': choice(quotes), "dyk":dyk, "promote":promote})
Exemple #34
0
 def set_seed_value(self):
     set_seed(self.seed_buffer)