def _generatesteps(self): pars = self.pars frametimings = self.frametimings if self.maxframes is None: ntotal = int(pars.stimframes / pars.nblinks) if ntotal != frametimings.shape[0]: print( f'For {self.exp}\nstimulus {iof.getstimname(self.exp, self.stimnr)} :\n' f'Number of frames specified in the parameters file ({ntotal}' f' frames) and frametimings ({frametimings.shape[0]}) do not' ' agree!' ' The stimulus was possibly interrupted during recording.' ' ntotal is changed to match actual frametimings.') ntotal = frametimings.shape[0] else: ntotal = self.maxframes # Make a copy of the initial seed to not change it pars.stepseed = pars.initial_stepseed randnrs, pars.stepseed = randpy.gasdev(pars.stepseed, ntotal * 2) randnrs = np.array(randnrs) * pars.stepsize xsteps = randnrs[::2] ysteps = randnrs[1::2] steps = np.vstack((xsteps, ysteps)) steps /= pars.bgstixel self.bgsteps = steps self.ntotal = ntotal
def _generatetexture_withloops(self): pars = self.pars self.texpars_withloop = Parameters() bgstixel = int(pars.bgstixel) filterstd = pars.filterstd meanintensity = pars.meanintensity filterwidth = int(filterstd / bgstixel * 3) noiselim = (np.ceil( np.array([pars.squareheight, pars.squarewidth]) / bgstixel)).astype(int) gfilter = np.zeros((pars.squareheight, pars.squarewidth)) seed = pars.bggenerationseed texture = np.zeros((pars.squareheight, pars.squarewidth)) noisefield = np.zeros((pars.squareheight, pars.squarewidth)) norm = 0 for i in range(noiselim[0]): for j in range(noiselim[1]): rndnr, seed = randpy.gasdev(seed) noisefield[ i, j] = meanintensity + meanintensity * pars.bgcontrast * rndnr if (i < filterwidth * 2 + 1) and (j < filterwidth * 2 + 1): gfilter[i, j] = np.exp2(-((i - filterwidth)**2 + (j - filterwidth)**2) / (2 * (filterstd / bgstixel)**2)) norm += gfilter[i, j] for i in range(noiselim[0]): for j in range(noiselim[1]): helper = 0 for ki in range(filterwidth * 2 + 1): for kj in range(filterwidth * 2 + 1): helper += (noisefield[ (i - (ki - filterwidth) + noiselim[0]) % noiselim[0], (j - (kj - filterwidth) + noiselim[1]) % noiselim[1]] * gfilter[ki, kj]) # c = 255 * ((helper / norm - meanintensity) * filterstd / bgstixel + meanintensity) c = self._normalizetexture(helper, norm, meanintensity, filterstd, bgstixel) for gi in range(bgstixel): for gj in range(bgstixel): texture[i * bgstixel + gi, j * bgstixel + gj] = c # This will be the full size 800x800 with repeats self.texturewithloopsmaxi = texture # Save a smaller version for compatibility self.texturewithloops = texture[::bgstixel, ::bgstixel]
def _generatetexture(self): pars = self.pars self.texpars = Parameters() bgstixel = pars.bgstixel filterstd = pars.filterstd meanintensity = pars.meanintensity filterwidth = filterstd / bgstixel * 3 noiselim = (np.ceil( np.array([pars.squareheight, pars.squarewidth]) / bgstixel)).astype(int) # Gaussian filter is applied to the noise field by a for loop in the cpp code, # and its norm is xx, yy = np.meshgrid(np.arange(2 * filterwidth), np.arange(2 * filterwidth)) gfilter = np.exp2(-((xx - filterwidth)**2 + (yy - filterwidth)**2) / (2 * (filterstd / bgstixel)**2)) norm = gfilter.sum() randnrs = np.reshape( randpy.gasdev(pars.bggenerationseed, noiselim[0] * noiselim[1])[0], (noiselim[0], noiselim[1])) noisefield = (pars.meanintensity + pars.meanintensity * pars.bgcontrast * randnrs) texturebasic = snd.convolve(noisefield, gfilter, mode='wrap') texturetiled = snd.convolve(np.tile(noisefield, [3, 3]), gfilter) texturebasic = self._normalizetexture(texturebasic, norm, meanintensity, filterstd, bgstixel) texturetiled = self._normalizetexture(texturetiled, norm, meanintensity, filterstd, bgstixel) self.texture = texturetiled self.texturebasic = texturebasic self.texture_flipped = np.flipud(texturetiled) self.texpars.noiselim = noiselim self.texpars.filterwidth = filterwidth
def randomizestripes(label, exp_name='20180124', stim_nrs=6): exp_dir = iof.exp_dir_fixer(exp_name) if isinstance(stim_nrs, int): stim_nrs = [stim_nrs] for stim_nr in stim_nrs: stimname = iof.getstimname(exp_name, stim_nr) clusters, metadata = asc.read_spikesheet(exp_dir) parameters = asc.read_parameters(exp_dir, stim_nr) scr_width = metadata['screen_width'] px_size = metadata['pixel_size(um)'] stx_w = parameters['stixelwidth'] stx_h = parameters['stixelheight'] if (stx_h/stx_w) < 2: raise ValueError('Make sure the stimulus is stripeflicker.') sy = scr_width/stx_w # sy = sy*4 sy = int(sy) nblinks = parameters['Nblinks'] try: bw = parameters['blackwhite'] except KeyError: bw = False try: seed = parameters['seed'] initialseed = parameters['seed'] except KeyError: seed = -10000 initialseed = -10000 if nblinks == 1: ft_on, ft_off = asc.readframetimes(exp_dir, stim_nr, returnoffsets=True) # Initialize empty array twice the size of one of them, assign # value from on or off to every other element. frametimings = np.empty(ft_on.shape[0]*2, dtype=float) frametimings[::2] = ft_on frametimings[1::2] = ft_off # Set filter length so that temporal filter is ~600 ms. # The unit here is number of frames. filter_length = 40 elif nblinks == 2: frametimings = asc.readframetimes(exp_dir, stim_nr) filter_length = 20 else: raise ValueError('Unexpected value for nblinks.') # Omit everything that happens before the first 10 seconds cut_time = 10 frame_duration = np.average(np.ediff1d(frametimings)) total_frames = int(frametimings.shape[0]/4) all_spiketimes = [] # Store spike triggered averages in a list containing correct # shaped arrays stas = [] for i in range(len(clusters[:, 0])): spikes_orig = asc.read_raster(exp_dir, stim_nr, clusters[i, 0], clusters[i, 1]) spikesneeded = spikes_orig.shape[0]*1000 spiketimes = np.random.random_sample(spikesneeded)*spikes_orig.max() spiketimes = np.sort(spiketimes) spikes = asc.binspikes(spiketimes, frametimings) all_spiketimes.append(spikes) stas.append(np.zeros((sy, filter_length))) if bw: randnrs, seed = randpy.ran1(seed, sy*total_frames) # randnrs = mersennetw(sy*total_frames, seed1=seed) randnrs = [1 if i > .5 else -1 for i in randnrs] else: randnrs, seed = randpy.gasdev(seed, sy*total_frames) stimulus = np.reshape(randnrs, (sy, total_frames), order='F') del randnrs for k in range(filter_length, total_frames-filter_length+1): stim_small = stimulus[:, k-filter_length+1:k+1][:, ::-1] for j in range(clusters.shape[0]): spikes = all_spiketimes[j] if spikes[k] != 0 and frametimings[k]>cut_time: stas[j] += spikes[k]*stim_small max_inds = [] spikenrs = np.array([spikearr.sum() for spikearr in all_spiketimes]) quals = np.array([]) for i in range(clusters.shape[0]): stas[i] = stas[i]/spikenrs[i] # Find the pixel with largest absolute value max_i = np.squeeze(np.where(np.abs(stas[i]) == np.max(np.abs(stas[i])))) # If there are multiple pixels with largest value, # take the first one. if max_i.shape != (2,): try: max_i = max_i[:, 0] # If max_i cannot be found just set it to zeros. except IndexError: max_i = np.array([0, 0]) max_inds.append(max_i) quals = np.append(quals, asc.staquality(stas[i])) # savefname = str(stim_nr)+'_data' # savepath = pjoin(exp_dir, 'data_analysis', stimname) # # exp_name = os.path.split(exp_dir)[-1] # # if not os.path.isdir(savepath): # os.makedirs(savepath, exist_ok=True) # savepath = os.path.join(savepath, savefname) # # keystosave = ['stas', 'max_inds', 'clusters', 'sy', # 'frame_duration', 'all_spiketimes', 'stimname', # 'total_frames', 'stx_w', 'spikenrs', 'bw', # 'quals', 'nblinks', 'filter_length', 'exp_name'] # data_in_dict = {} # for key in keystosave: # data_in_dict[key] = locals()[key] # # np.savez(savepath, **data_in_dict) # print(f'Analysis of {stimname} completed.') clusterids = plf.clusters_to_ids(clusters) # assert(initialseed.ty) correction = corrector(sy, total_frames, filter_length, initialseed) correction = np.outer(correction, np.ones(filter_length)) t = np.arange(filter_length)*frame_duration*1000 vscale = int(stas[0].shape[0] * stx_w*px_size/1000) for i in range(clusters.shape[0]): sta = stas[i]-correction vmax = 0.03 vmin = -vmax plt.figure(figsize=(6, 15)) ax = plt.subplot(111) im = ax.imshow(sta, cmap='RdBu', vmin=vmin, vmax=vmax, extent=[0, t[-1], -vscale, vscale], aspect='auto') plt.xlabel('Time [ms]') plt.ylabel('Distance [mm]') plf.spineless(ax) plf.colorbar(im, ticks=[vmin, 0, vmax], format='%.2f', size='2%') plt.suptitle('{}\n{}\n' '{} Rating: {}\n' 'nrofspikes {:5.0f}'.format(exp_name, stimname, clusterids[i], clusters[i][2], spikenrs[i])) plt.subplots_adjust(top=.90) savepath = os.path.join(exp_dir, 'data_analysis', stimname, 'STAs_randomized') svgpath = pjoin(savepath, label) if not os.path.isdir(svgpath): os.makedirs(svgpath, exist_ok=True) plt.savefig(os.path.join(svgpath, clusterids[i]+'.svg'), bbox_inches='tight') plt.close() os.system(f"convert -delay 25 {svgpath}/*svg {savepath}/animated_{label}.gif")
#x = sigtest(spikes, stimulus, filter_length) #x_min, x_max = confidence_interval_2d(x) #%% #ax = plt.gca() #ax.fill_between(np.arange(filter_length), # x.min(axis=1), x.max(axis=1), # color='grey', alpha=.5) #ax.fill_between(np.arange(filter_length), x_min, x_max, # color='red', alpha=.5) #ax.plot(eigvals, 'ok') #%% exp, stimnr = '20180710', 1 ff = Stimulus(exp, stimnr) stimulus = np.array(randpy.gasdev(-1000, ff.frametimings.shape[0])[0]) st = OMB(exp, 8) ff = st stimulus = st.bgsteps[0, :] allspikes = ff.allspikes() i = 0 spikes = allspikes[i, :] filter_length = ff.filter_length rw = asc.rolling_window(stimulus, filter_length, preserve_dim=True) sta = (spikes @ rw) / spikes.sum() #%% # I am not projecting out the STA like Equation 4 in Schwartz et al.2006,J.Vision
def stripeflickeranalysis(exp_name, stim_nrs): exp_dir = iof.exp_dir_fixer(exp_name) if isinstance(stim_nrs, int): stim_nrs = [stim_nrs] for stim_nr in stim_nrs: stimname = iof.getstimname(exp_name, stim_nr) clusters, metadata = asc.read_spikesheet(exp_dir) parameters = asc.read_parameters(exp_dir, stim_nr) scr_width = metadata['screen_width'] px_size = metadata['pixel_size(um)'] stx_w = parameters['stixelwidth'] stx_h = parameters['stixelheight'] if (stx_h / stx_w) < 2: raise ValueError('Make sure the stimulus is stripeflicker.') sy = scr_width / stx_w if sy % 1 == 0: sy = int(sy) else: raise ValueError('sy is not an integer') nblinks = parameters['Nblinks'] try: bw = parameters['blackwhite'] except KeyError: bw = False try: seed = parameters['seed'] except KeyError: seed = -10000 if nblinks == 1: ft_on, ft_off = asc.readframetimes(exp_dir, stim_nr, returnoffsets=True) # Initialize empty array twice the size of one of them, assign # value from on or off to every other element. frametimings = np.empty(ft_on.shape[0] * 2, dtype=float) frametimings[::2] = ft_on frametimings[1::2] = ft_off # Set filter length so that temporal filter is ~600 ms. # The unit here is number of frames. filter_length = 40 elif nblinks == 2: frametimings = asc.readframetimes(exp_dir, stim_nr) filter_length = 20 else: raise ValueError('Unexpected value for nblinks.') # Omit everything that happens before the first 10 seconds cut_time = 10 frame_duration = np.average(np.ediff1d(frametimings)) total_frames = frametimings.shape[0] all_spiketimes = [] # Store spike triggered averages in a list containing correct # shaped arrays stas = [] for i in range(len(clusters[:, 0])): spiketimes = asc.read_raster(exp_dir, stim_nr, clusters[i, 0], clusters[i, 1]) spikes = asc.binspikes(spiketimes, frametimings) all_spiketimes.append(spikes) stas.append(np.zeros((sy, filter_length))) if bw: randnrs, seed = randpy.ran1(seed, sy * total_frames) randnrs = [1 if i > .5 else -1 for i in randnrs] else: randnrs, seed = randpy.gasdev(seed, sy * total_frames) stimulus = np.reshape(randnrs, (sy, total_frames), order='F') del randnrs for k in range(filter_length, total_frames - filter_length + 1): stim_small = stimulus[:, k - filter_length + 1:k + 1][:, ::-1] for j in range(clusters.shape[0]): spikes = all_spiketimes[j] if spikes[k] != 0 and frametimings[k] > cut_time: stas[j] += spikes[k] * stim_small max_inds = [] spikenrs = np.array([spikearr.sum() for spikearr in all_spiketimes]) quals = np.array([]) for i in range(clusters.shape[0]): stas[i] = stas[i] / spikenrs[i] # Find the pixel with largest absolute value max_i = np.squeeze( np.where(np.abs(stas[i]) == np.max(np.abs(stas[i])))) # If there are multiple pixels with largest value, # take the first one. if max_i.shape != (2, ): try: max_i = max_i[:, 0] # If max_i cannot be found just set it to zeros. except IndexError: max_i = np.array([0, 0]) max_inds.append(max_i) quals = np.append(quals, asc.staquality(stas[i])) savefname = str(stim_nr) + '_data' savepath = pjoin(exp_dir, 'data_analysis', stimname) exp_name = os.path.split(exp_dir)[-1] if not os.path.isdir(savepath): os.makedirs(savepath, exist_ok=True) savepath = os.path.join(savepath, savefname) keystosave = [ 'stas', 'max_inds', 'clusters', 'sy', 'frame_duration', 'all_spiketimes', 'stimname', 'total_frames', 'stx_w', 'spikenrs', 'bw', 'quals', 'nblinks', 'filter_length', 'exp_name' ] data_in_dict = {} for key in keystosave: data_in_dict[key] = locals()[key] np.savez(savepath, **data_in_dict) print(f'Analysis of {stimname} completed.')
def OMBanalyzer(exp_name, stimnr, plotall=False, nr_bins=20): """ Analyze responses to object moving background stimulus. STA and STC are calculated. Note that there are additional functions that make use of the OMB class. This function was written before the OMB class existed """ # TODO # Add iteration over multiple stimuli exp_dir = iof.exp_dir_fixer(exp_name) exp_name = os.path.split(exp_dir)[-1] stimname = iof.getstimname(exp_dir, stimnr) parameters = asc.read_parameters(exp_name, stimnr) assert parameters['stimulus_type'] == 'objectsmovingbackground' stimframes = parameters.get('stimFrames', 108000) preframes = parameters.get('preFrames', 200) nblinks = parameters.get('Nblinks', 2) seed = parameters.get('seed', -10000) seed2 = parameters.get('objseed', -1000) stepsize = parameters.get('stepsize', 2) ntotal = int(stimframes / nblinks) clusters, metadata = asc.read_spikesheet(exp_name) refresh_rate = metadata['refresh_rate'] filter_length, frametimings = asc.ft_nblinks(exp_name, stimnr, nblinks, refresh_rate) frame_duration = np.ediff1d(frametimings).mean() frametimings = frametimings[:-1] if ntotal != frametimings.shape[0]: print(f'For {exp_name}\nstimulus {stimname} :\n' f'Number of frames specified in the parameters file ({ntotal}' f' frames) and frametimings ({frametimings.shape[0]}) do not' ' agree!' ' The stimulus was possibly interrupted during recording.' ' ntotal is changed to match actual frametimings.') ntotal = frametimings.shape[0] # Generate the numbers to be used for reconstructing the motion # ObjectsMovingBackground.cpp line 174, steps are generated in an # alternating fashion. We can generate all of the numbers at once # (total lengths is defined by stimFrames) and then assign # to x and y directions. Although there is more # stuff around line 538 randnrs, seed = randpy.gasdev(seed, ntotal * 2) randnrs = np.array(randnrs) * stepsize xsteps = randnrs[::2] ysteps = randnrs[1::2] clusterids = plf.clusters_to_ids(clusters) all_spikes = np.empty((clusters.shape[0], ntotal)) for i, (cluster, channel, _) in enumerate(clusters): spiketimes = asc.read_raster(exp_name, stimnr, cluster, channel) spikes = asc.binspikes(spiketimes, frametimings) all_spikes[i, :] = spikes # Collect STA for x and y movement in one array stas = np.zeros((clusters.shape[0], 2, filter_length)) stc_x = np.zeros((clusters.shape[0], filter_length, filter_length)) stc_y = np.zeros((clusters.shape[0], filter_length, filter_length)) t = np.arange(filter_length) * 1000 / refresh_rate * nblinks for k in range(filter_length, ntotal - filter_length + 1): x_mini = xsteps[k - filter_length + 1:k + 1][::-1] y_mini = ysteps[k - filter_length + 1:k + 1][::-1] for i, (cluster, channel, _) in enumerate(clusters): if all_spikes[i, k] != 0: stas[i, 0, :] += all_spikes[i, k] * x_mini stas[i, 1, :] += all_spikes[i, k] * y_mini # Calculate non-centered STC (Cantrell et al., 2010) stc_x[i, :, :] += all_spikes[i, k] * calc_covar(x_mini) stc_y[i, :, :] += all_spikes[i, k] * calc_covar(y_mini) eigvals_x = np.zeros((clusters.shape[0], filter_length)) eigvals_y = np.zeros((clusters.shape[0], filter_length)) eigvecs_x = np.zeros((clusters.shape[0], filter_length, filter_length)) eigvecs_y = np.zeros((clusters.shape[0], filter_length, filter_length)) bins_x = np.zeros((clusters.shape[0], nr_bins)) bins_y = np.zeros((clusters.shape[0], nr_bins)) spikecount_x = np.zeros(bins_x.shape) spikecount_y = np.zeros(bins_x.shape) generators_x = np.zeros(all_spikes.shape) generators_y = np.zeros(all_spikes.shape) # Normalize STAs and STCs with respect to spike numbers for i in range(clusters.shape[0]): totalspikes = all_spikes.sum(axis=1)[i] stas[i, :, :] = stas[i, :, :] / totalspikes stc_x[i, :, :] = stc_x[i, :, :] / totalspikes stc_y[i, :, :] = stc_y[i, :, :] / totalspikes try: eigvals_x[i, :], eigvecs_x[i, :, :] = np.linalg.eigh( stc_x[i, :, :]) eigvals_y[i, :], eigvecs_y[i, :, :] = np.linalg.eigh( stc_y[i, :, :]) except np.linalg.LinAlgError: continue # Calculate the generator signals and nonlinearities generators_x[i, :] = np.convolve(eigvecs_x[i, :, -1], xsteps, mode='full')[:-filter_length + 1] generators_y[i, :] = np.convolve(eigvecs_y[i, :, -1], ysteps, mode='full')[:-filter_length + 1] spikecount_x[i, :], bins_x[i, :] = nlt.calc_nonlin( all_spikes[i, :], generators_x[i, :], nr_bins) spikecount_y[i, :], bins_y[i, :] = nlt.calc_nonlin( all_spikes[i, :], generators_y[i, :], nr_bins) savepath = os.path.join(exp_dir, 'data_analysis', stimname) if not os.path.isdir(savepath): os.makedirs(savepath, exist_ok=True) # Calculated based on last eigenvector magx = eigvecs_x[:, :, -1].sum(axis=1) magy = eigvecs_y[:, :, -1].sum(axis=1) r_ = np.sqrt(magx**2 + magy**2) theta_ = np.arctan2(magy, magx) # To draw the vectors starting from origin, insert zeros every other element r = np.zeros(r_.shape[0] * 2) theta = np.zeros(theta_.shape[0] * 2) r[1::2] = r_ theta[1::2] = theta_ plt.polar(theta, r) plt.gca().set_xticks(np.pi / 180 * np.array([0, 90, 180, 270])) plt.title(f'Population plot for motion STAs\n{exp_name}') plt.savefig(os.path.join(savepath, 'population.svg')) if plotall: plt.show() plt.close() for i in range(stas.shape[0]): stax = stas[i, 0, :] stay = stas[i, 1, :] ax1 = plt.subplot(211) ax1.plot(t, stax, label=r'STA$_{\rm X}$') ax1.plot(t, stay, label=r'STA$_{\rm Y}$') ax1.plot(t, eigvecs_x[i, :, -1], label='Eigenvector_X 0') ax1.plot(t, eigvecs_y[i, :, -1], label='Eigenvector_Y 0') plt.legend(fontsize='x-small') ax2 = plt.subplot(4, 4, 9) ax3 = plt.subplot(4, 4, 13) ax2.set_yticks([]) ax2.set_xticklabels([]) ax3.set_yticks([]) ax2.set_title('Eigenvalues', size='small') ax2.plot(eigvals_x[i, :], 'o', markerfacecolor='C0', markersize=4, markeredgewidth=0) ax3.plot(eigvals_y[i, :], 'o', markerfacecolor='C1', markersize=4, markeredgewidth=0) ax4 = plt.subplot(2, 3, 5) ax4.plot(bins_x[i, :], spikecount_x[i, :] / frame_duration) ax4.plot(bins_y[i, :], spikecount_y[i, :] / frame_duration) ax4.set_ylabel('Firing rate [Hz]') ax4.set_title('Nonlinearities', size='small') plf.spineless([ax1, ax2, ax3, ax4], 'tr') ax5 = plt.subplot(2, 3, 6, projection='polar') ax5.plot(theta, r, color='k', alpha=.3) ax5.plot(theta[2 * i:2 * i + 2], r[2 * i:2 * i + 2], lw=3) ax5.set_xticklabels(['0', '', '', '', '180', '', '270', '']) ax5.set_title('Vector sum of X and Y STCs', size='small') plt.suptitle(f'{exp_name}\n{stimname}\n{clusterids[i]}') plt.subplots_adjust(hspace=.4) plt.savefig(os.path.join(savepath, clusterids[i] + '.svg'), bbox_inches='tight') if plotall: plt.show() plt.close() keystosave = [ 'nblinks', 'all_spikes', 'clusters', 'frame_duration', 'eigvals_x', 'eigvals_y', 'eigvecs_x', 'eigvecs_y', 'filter_length', 'magx', 'magy', 'ntotal', 'r', 'theta', 'stas', 'stc_x', 'stc_y', 'bins_x', 'bins_y', 'nr_bins', 'spikecount_x', 'spikecount_y', 'generators_x', 'generators_y', 't' ] datadict = {} for key in keystosave: datadict[key] = locals()[key] npzfpath = os.path.join(savepath, str(stimnr) + '_data') np.savez(npzfpath, **datadict)
def loadstim(exp, stim_nr, maxframenr=10000): """ Recreate the stimulus based on the seed for a given stimulus type. Each type of stimulus requires a different way of handling the random numbers from the PRNG. """ sortedstim = asc.stimulisorter(exp) clusters, metadata = asc.read_spikesheet(exp) pars = asc.read_parameters(exp, stim_nr) for key, val in sortedstim.items(): if stim_nr in val: stimtype = key if stimtype in ['fff', 'stripeflicker', 'checkerflicker', 'frozennoise']: seed = pars.get('seed', -10000) bw = pars.get('blackwhite', False) filter_length, frametimings = asc.ft_nblinks(exp, stim_nr) total_frames = frametimings.shape[0] if stimtype == 'fff': if bw: randnrs, seed = randpy.ranb(seed, total_frames) # Since ranb returns zeros and ones, we need to convert # the zeros into -1s. stimulus = np.array(randnrs) * 2 - 1 else: randnrs, seed = randpy.gasdev(seed, total_frames) stimulus = np.array(randnrs) elif stimtype in ['checkerflicker', 'frozennoise']: scr_width = metadata['screen_width'] scr_height = metadata['screen_height'] stx_h = pars['stixelheight'] stx_w = pars['stixelwidth'] # Check whether any parameters are given for margins, calculate # screen dimensions. marginkeys = ['tmargin', 'bmargin', 'rmargin', 'lmargin'] margins = [] for key in marginkeys: margins.append(pars.get(key, 0)) # Subtract bottom and top from vertical dimension; left and right # from horizontal dimension scr_width = scr_width - sum(margins[2:]) scr_height = scr_height - sum(margins[:2]) sx, sy = scr_height / stx_h, scr_width / stx_w # Make sure that the number of stimulus pixels are integers # Rounding down is also possible but might require # other considerations. if sx % 1 == 0 and sy % 1 == 0: sx, sy = int(sx), int(sy) else: raise ValueError('sx and sy must be integers') # HINT: fixing stimulus length for now because of memory # capacity total_frames = maxframenr randnrs, seed = randpy.ranb(seed, sx * sy * total_frames) # Reshape and change 0's to -1's stimulus = np.reshape(randnrs, (sx, sy, total_frames), order='F') * 2 - 1 return stimulus if stimtype == 'OMB': stimframes = pars.get('stimFrames', 108000) preframes = pars.get('preFrames', 200) nblinks = pars.get('Nblinks', 2) seed = pars.get('seed', -10000) seed2 = pars.get('objseed', -1000) stepsize = pars.get('stepsize', 2) ntotal = int(stimframes / nblinks) clusters, metadata = asc.read_spikesheet(exp) refresh_rate = metadata['refresh_rate'] filter_length, frametimings = asc.ft_nblinks(exp, stim_nr, nblinks, refresh_rate) frame_duration = np.ediff1d(frametimings).mean() frametimings = frametimings[:-1] if ntotal != frametimings.shape[0]: print( f'For {exp}\nstimulus {iof.getstimname(exp, stim_nr)} :\n' f'Number of frames specified in the parameters file ({ntotal}' f' frames) and frametimings ({frametimings.shape[0]}) do not' ' agree!' ' The stimulus was possibly interrupted during recording.' ' ntotal is changed to match actual frametimings.') ntotal = frametimings.shape[0] randnrs, seed = randpy.gasdev(seed, ntotal * 2) randnrs = np.array(randnrs) * stepsize xsteps = randnrs[::2] ysteps = randnrs[1::2] return np.vstack((xsteps, ysteps)) return None
contrast = pars.get('contrast', 1) squareheight, squarewidth = (800, 800) #%% filterwidth = filterstd / bgstixel * 3 noiselim = (np.ceil(np.array([squareheight, squarewidth]) / bgstixel)).astype(int) # Gaussian filter is applied to the noise field by a for loop in the cpp code, # and its norm is xx, yy = np.meshgrid(np.arange(2 * filterwidth), np.arange(2 * filterwidth)) gfilter = np.exp2(-((xx - filterwidth)**2 + (yy - filterwidth)**2) / (2 * (filterstd / bgstixel)**2)) norm = gfilter.sum() randnrs = np.reshape( randpy.gasdev(bggenerationseed, noiselim[0] * noiselim[1])[0], (noiselim[0], noiselim[1])) noisefield = meanintensity + meanintensity * bgcontrast * randnrs #noisefield = np.flipud(noisefield) # Flip the texture to match the stimulator #%% #filtered = gaussian_filter(noisefield, np.sqrt(filterstd)) #post_tiled = np.tile(filtered, [3,3]) # Filter first, then tile # First tile the noise field, then filter. tiled = gaussian_filter(np.tile(noisefield, [3, 3]), np.sqrt(filterstd)) import scipy.ndimage as snd tiled2 = snd.convolve(np.tile(noisefield, [3, 3]), gfilter) tiled2 = ((tiled2 / norm - meanintensity) * filterstd / bgstixel + meanintensity)
def fffanalyzer(exp_name, stimnrs): """ Analyzes and plots data from full field flicker stimulus. """ exp_dir = iof.exp_dir_fixer(exp_name) exp_name = os.path.split(exp_dir)[-1] if isinstance(stimnrs, int): stimnrs = [stimnrs] for stimnr in stimnrs: stimnr = str(stimnr) stimname = iof.getstimname(exp_name, stimnr) clusters, metadata = asc.read_spikesheet(exp_dir) parameters = asc.read_parameters(exp_dir, stimnr) clusterids = plf.clusters_to_ids(clusters) refresh_rate = metadata['refresh_rate'] if parameters['stixelheight'] < 600 or parameters['stixelwidth'] < 800: raise ValueError('Make sure the stimulus is full field flicker.') nblinks = parameters['Nblinks'] bw = parameters.get('blackwhite', False) seed = parameters.get('seed', -10000) filter_length, frametimings = asc.ft_nblinks(exp_dir, stimnr) frame_duration = np.average(np.ediff1d(frametimings)) total_frames = frametimings.shape[0] all_spiketimes = [] # Store spike triggered averages in a list containing correct shaped # arrays stas = [] # Make a list for covariances of the spike triggered ensemble covars = [] for i in range(len(clusters[:, 0])): spiketimes = asc.read_raster(exp_dir, stimnr, clusters[i, 0], clusters[i, 1]) spikes = asc.binspikes(spiketimes, frametimings) all_spiketimes.append(spikes) stas.append(np.zeros(filter_length)) covars.append(np.zeros((filter_length, filter_length))) if bw: randnrs, seed = randpy.ranb(seed, total_frames) # Since ranb returns zeros and ones, we need to convert the zeros # into -1s. stimulus = np.array(randnrs) * 2 - 1 else: randnrs, seed = randpy.gasdev(seed, total_frames) stimulus = np.array(randnrs) for k in range(filter_length, total_frames-filter_length+1): stim_small = stimulus[k-filter_length+1:k+1][::-1] for j in range(clusters.shape[0]): spikes = all_spiketimes[j] if spikes[k] != 0: stas[j] += spikes[k]*stim_small # This trick is needed to use .T for tranposing stim_small_n = stim_small[np.newaxis, :] # Calculate the covariance as the weighted outer product # of small stimulus(i.e. snippet) with itself # This is non-centered STC (a la Cantrell et al., 2010) covars[j] += spikes[k]*(np.dot(stim_small_n.T, stim_small_n)) spikenrs = np.array([spikearr.sum() for spikearr in all_spiketimes]) plotpath = os.path.join(exp_dir, 'data_analysis', stimname, 'filters') if not os.path.isdir(plotpath): os.makedirs(plotpath, exist_ok=True) t = np.arange(filter_length)*frame_duration*1000 eigvals = [np.zeros((filter_length)) for i in range(clusters.shape[0])] eigvecs = [np.zeros((filter_length, filter_length)) for i in range(clusters.shape[0])] for i in range(clusters.shape[0]): stas[i] = stas[i]/spikenrs[i] covars[i] = covars[i]/spikenrs[i] try: eigvals[i], eigvecs[i] = np.linalg.eigh(covars[i]) except np.linalg.LinAlgError: eigvals[i] = np.full((filter_length), np.nan) eigvecs[i] = np.full((filter_length, filter_length), np.nan) fig = plt.figure(figsize=(9, 6)) ax = plt.subplot(111) ax.plot(t, stas[i], label='STA') ax.plot(t, eigvecs[i][:, 0], label='STC component 1', alpha=.5) ax.plot(t, eigvecs[i][:, -1], label='STC component 2', alpha=.5) # Add eigenvalues as inset ax2 = fig.add_axes([.65, .15, .2, .2]) # Highlight the first and second components which are plotted ax2.plot(0, eigvals[i][0], 'o', markersize=7, markerfacecolor='C1', markeredgewidth=0) ax2.plot(filter_length-1, eigvals[i][-1], 'o', markersize=7, markerfacecolor='C2', markeredgewidth=0) ax2.plot(eigvals[i], 'ko', alpha=.5, markersize=4, markeredgewidth=0) ax2.set_axis_off() plf.spineless(ax) ax.set_xlabel('Time[ms]') ax.set_title(f'{exp_name}\n{stimname}\n{clusterids[i]} Rating:' f' {clusters[i, 2]} {int(spikenrs[i])} spikes') plt.savefig(os.path.join(plotpath, clusterids[i])+'.svg', format='svg', dpi=300) plt.close() savepath = os.path.join(os.path.split(plotpath)[0], stimnr+'_data') keystosave = ['stas', 'clusters', 'frame_duration', 'all_spiketimes', 'stimname', 'total_frames', 'spikenrs', 'bw', 'nblinks', 'filter_length', 'exp_name', 'covars', 'eigvals', 'eigvecs'] data_in_dict = {} for key in keystosave: data_in_dict[key] = locals()[key] np.savez(savepath, **data_in_dict) print(f'Analysis of {stimname} completed.')
'noise is implemented.') bgcontrast = pars.get('bgcontrast', 0.3) bggenerationseed = -10000 filterstd = pars.get('filterstdv', bgstixel) meanintensity = pars.get('meanintensity', 0.5) contrast = pars.get('contrast', 1) squareheight, squarewidth = (800, 800) ntotal = int(stimframes / nblinks) refresh_rate = metadata['refresh_rate'] _, frametimings = asc.ft_nblinks(exp, stimnr, nblinks, refresh_rate) frame_duration = np.ediff1d(frametimings).mean() frametimings = frametimings[:-1] if ntotal != frametimings.shape[0]: print(f'For {exp}\nstimulus {iof.getstimname(exp, stimnr)} :\n' f'Number of frames specified in the parameters file ({ntotal}' f' frames) and frametimings ({frametimings.shape[0]}) do not' ' agree!' ' The stimulus was possibly interrupted during recording.' ' ntotal is changed to match actual frametimings.') ntotal = frametimings.shape[0] randnrs, seed = randpy.gasdev(seed, ntotal*2) randnrs = np.array(randnrs)*stepsize xsteps = randnrs[::2] ysteps = randnrs[1::2]
def stripeflickeranalysis(exp_name, stim_nrs): exp_dir = iof.exp_dir_fixer(exp_name) if isinstance(stim_nrs, int): stim_nrs = [stim_nrs] elif len(stim_nrs) == 0: return for stim_nr in stim_nrs: stimname = iof.getstimname(exp_name, stim_nr) clusters, metadata = asc.read_spikesheet(exp_dir) parameters = asc.read_parameters(exp_dir, stim_nr) scr_width = metadata['screen_width'] px_size = metadata['pixel_size(um)'] refresh_rate = metadata['refresh_rate'] stx_w = parameters['stixelwidth'] stx_h = parameters['stixelheight'] if (stx_h / stx_w) < 2: raise ValueError('Make sure the stimulus is stripeflicker.') sy = scr_width / stx_w if sy % 1 == 0: sy = int(sy) else: raise ValueError('sy is not an integer') nblinks = parameters['Nblinks'] bw = parameters.get('blackwhite', False) seed = parameters.get('seed', -10000) filter_length, frametimings = asc.ft_nblinks(exp_dir, stim_nr) # Omit everything that happens before the first 10 seconds cut_time = 10 frame_duration = np.average(np.ediff1d(frametimings)) total_frames = frametimings.shape[0] all_spiketimes = [] # Store spike triggered averages in a list containing correct # shaped arrays stas = [] for i in range(len(clusters[:, 0])): spiketimes = asc.read_raster(exp_dir, stim_nr, clusters[i, 0], clusters[i, 1]) spikes = asc.binspikes(spiketimes, frametimings) all_spiketimes.append(spikes) stas.append(np.zeros((sy, filter_length))) # Add one more element to correct for random noise clusters = np.vstack((clusters, [0, 0, 0])) all_spiketimes.append(np.ones(frametimings.shape, dtype=int)) stas.append(np.zeros((sy, filter_length))) if bw: randnrs, seed = randpy.ranb(seed, sy * total_frames) else: randnrs, seed = randpy.gasdev(seed, sy * total_frames) stimulus = np.reshape(randnrs, (sy, total_frames), order='F') if bw: # Since ranb returns zeros and ones, we need to convert the zeros # into -1s. stimulus = stimulus * 2 - 1 del randnrs for k in range(filter_length, total_frames - filter_length + 1): stim_small = stimulus[:, k - filter_length + 1:k + 1][:, ::-1] for j in range(clusters.shape[0]): spikes = all_spiketimes[j] if spikes[k] != 0 and frametimings[k] > cut_time: stas[j] += spikes[k] * stim_small max_inds = [] spikenrs = np.array([spikearr.sum() for spikearr in all_spiketimes]) quals = np.array([]) # Remove the random noise correction element from clusters correction = stas.pop() / spikenrs[-1] clusters = clusters[:-1, :] all_spiketimes.pop() spikenrs = spikenrs[:-1] for i in range(clusters.shape[0]): stas[i] = stas[i] / spikenrs[i] stas[i] = stas[i] - correction # Find the pixel with largest absolute value max_i = np.squeeze( np.where(np.abs(stas[i]) == np.max(np.abs(stas[i])))) # If there are multiple pixels with largest value, # take the first one. if max_i.shape != (2, ): try: max_i = max_i[:, 0] # If max_i cannot be found just set it to zeros. except IndexError: max_i = np.array([0, 0]) # In case of spike numbers being zero, all elements are NaN # imshow and savefig do not play nice with NaN so set all to zero if np.all(np.isnan(stas[i])): stas[i] = np.zeros(stas[i].shape) max_inds.append(max_i) quals = np.append(quals, asc.staquality(stas[i])) savefname = str(stim_nr) + '_data' savepath = pjoin(exp_dir, 'data_analysis', stimname) exp_name = os.path.split(exp_dir)[-1] if not os.path.isdir(savepath): os.makedirs(savepath, exist_ok=True) savepath = os.path.join(savepath, savefname) keystosave = [ 'stas', 'max_inds', 'clusters', 'sy', 'correction', 'frame_duration', 'all_spiketimes', 'stimname', 'total_frames', 'stx_w', 'spikenrs', 'bw', 'quals', 'nblinks', 'filter_length', 'exp_name' ] data_in_dict = {} for key in keystosave: data_in_dict[key] = locals()[key] np.savez(savepath, **data_in_dict) print(f'Analysis of {stimname} completed.')