def test_lookup_tables(sentence, expected, labeled_tokens, spacy_nlp):
    from rasa.nlu.featurizers.regex_featurizer import RegexFeaturizer

    lookups = [
        {
            "name":
            "drinks",
            "elements":
            ["mojito", "lemonade", "sweet berry wine", "tea", "club?mate"],
        },
        {
            "name": "plates",
            "elements": "data/test/lookup_tables/plates.txt"
        },
    ]
    ftr = RegexFeaturizer(lookup_tables=lookups)

    # adds tokens to the message
    tokenizer = SpacyTokenizer()
    message = Message(sentence)
    message.set("spacy_doc", spacy_nlp(sentence))
    tokenizer.process(message)

    result = ftr.features_for_patterns(message)
    assert np.allclose(result, expected, atol=1e-10)

    # the tokenizer should have added tokens
    assert len(message.get("tokens", [])) > 0
    # the number of regex matches on each token should match
    for i, token in enumerate(message.get("tokens")):
        token_matches = token.get("pattern").values()
        num_matches = sum(token_matches)
        assert num_matches == labeled_tokens.count(i)
def test_regex_featurizer(sentence, expected, labeled_tokens, spacy_nlp):
    from rasa.nlu.featurizers.regex_featurizer import RegexFeaturizer

    patterns = [
        {"pattern": "[0-9]+", "name": "number", "usage": "intent"},
        {"pattern": "\\bhey*", "name": "hello", "usage": "intent"},
        {"pattern": "[0-1]+", "name": "binary", "usage": "intent"},
    ]
    ftr = RegexFeaturizer(known_patterns=patterns)

    # adds tokens to the message
    tokenizer = SpacyTokenizer()
    message = Message(sentence)
    message.set("spacy_doc", spacy_nlp(sentence))
    tokenizer.process(message)

    result = ftr.features_for_patterns(message)
    assert np.allclose(result, expected, atol=1e-10)

    # the tokenizer should have added tokens
    assert len(message.get("tokens", [])) > 0
    # the number of regex matches on each token should match
    for i, token in enumerate(message.get("tokens")):
        token_matches = token.get("pattern").values()
        num_matches = sum(token_matches)
        assert num_matches == labeled_tokens.count(i)