Exemple #1
0
def test_deprecation_warning_logged():
    r = MarkdownReader()

    md = """
## intent:test-intent
- I want to go to [LA](city:Los Angeles)
    """

    with pytest.warns(
            FutureWarning,
            match=
            r"You are using the deprecated training data format to declare "
            r"synonyms.*",
    ):
        r.reads(md)
def test_dump_nlu_with_responses():
    md = """## intent:greet
- hey
- howdy
- hey there
- hello
- hi
- good morning
- good evening
- dear sir

## intent:chitchat/ask_name
- What's your name?
- What can I call you?

## intent:chitchat/ask_weather
- How's the weather?
- Is it too hot outside?
"""

    r = MarkdownReader()
    nlu_data = r.reads(md)

    dumped = nlu_data.nlu_as_markdown()
    assert dumped == md
def task(source, dest, cred_file, percent):

    # load Rasa NLU training data
    r = MarkdownReader()
    with open(source, "r") as fin:
        nlu = fin.read()

    nlu_train = r.reads(nlu)

    translate_client = translate.Client.from_service_account_json(cred_file)

    def trans(text):
        trans_text = translate_client.translate(text,
                                                source_language="en",
                                                target_language="zh-TW")
        logger.info(u'origin: {}, translated: {}'.format(
            example.text, trans_text['translatedText']))
        return trans_text['translatedText']

    nlu_train.training_examples = random_select_samples(
        nlu_train.training_examples, percent)
    for example in nlu_train.training_examples:
        example.text = trans(example.text)
        if example.get("entities"):
            for entity in example.get("entities"):
                entity["value"] = trans(entity['value'])

    # Generate Rasa NLU translated training data
    w = MarkdownWriter()
    w.dump(dest, nlu_train)
def test_markdown_entity_regex():
    r = MarkdownReader()

    md = """
## intent:restaurant_search
- i'm looking for a place to eat
- i'm looking for a place in the [north](loc-direction) of town
- show me [chines](cuisine:chinese) restaurants
- show me [chines](22_ab-34*3.A:43er*+?df) restaurants
    """

    result = r.reads(md)

    assert len(result.training_examples) == 4
    first = result.training_examples[0]
    assert first.data == {"intent": "restaurant_search"}
    assert first.text == "i'm looking for a place to eat"

    second = result.training_examples[1]
    assert second.data == {
        "intent":
        "restaurant_search",
        "entities": [{
            "start": 31,
            "end": 36,
            "value": "north",
            "entity": "loc-direction"
        }],
    }
    assert second.text == "i'm looking for a place in the north of town"

    third = result.training_examples[2]
    assert third.data == {
        "intent":
        "restaurant_search",
        "entities": [{
            "start": 8,
            "end": 14,
            "value": "chinese",
            "entity": "cuisine"
        }],
    }
    assert third.text == "show me chines restaurants"

    fourth = result.training_examples[3]
    assert fourth.data == {
        "intent":
        "restaurant_search",
        "entities": [{
            "start": 8,
            "end": 14,
            "value": "43er*+?df",
            "entity": "22_ab-34*3.A"
        }],
    }
    assert fourth.text == "show me chines restaurants"
Exemple #5
0
def test_check_check_correct_entity_annotations(text: Text, warnings: int):
    reader = MarkdownReader()
    tokenizer = WhitespaceTokenizer()

    training_data = reader.reads(text)
    tokenizer.train(training_data)

    with pytest.warns(UserWarning) as record:
        EntityExtractor.check_correct_entity_annotations(training_data)

    assert len(record) == warnings
    assert all([excerpt in record[0].message.args[0]]
               for excerpt in ["Misaligned entity annotation in sentence"])
def test_markdown_order():
    r = MarkdownReader()

    md = """## intent:z
- i'm looking for a place to eat
- i'm looking for a place in the [north](loc-direction) of town

## intent:a
- intent a
- also very important
"""

    training_data = r.reads(md)
    assert training_data.nlu_as_markdown() == md
Exemple #7
0
def test_markdown_entity_regex(example: Text, expected_num_entities: int):
    r = MarkdownReader()

    md = f"""
## intent:test-intent
- {example}
    """

    result = r.reads(md)

    assert len(result.training_examples) == 1
    actual_example = result.training_examples[0]
    assert actual_example.data["intent"] == "test-intent"
    assert len(actual_example.data.get("entities", [])) == expected_num_entities
Exemple #8
0
def test_markdown_unespace_tokens():
    r = MarkdownReader()

    md = """## intent:test-intent
- Hi \\t Can you help me?\\n I want to go to [Alexandria]{"entity": "city"}
"""
    expected_num_entities = 1

    training_data = r.reads(md)
    assert len(training_data.training_examples) == 1

    actual_example = training_data.training_examples[0]
    assert actual_example.data["intent"] == "test-intent"
    assert len(actual_example.data.get("entities",
                                       [])) == expected_num_entities
def test_markdown_entity_regex():
    r = MarkdownReader()

    md = """
## intent:restaurant_search
- i'm looking for a place to eat
- i'm looking for a place in the [north](loc-direction) of town
- show me [chines](cuisine:chinese) restaurants
- show me [chines](22_ab-34*3.A:43er*+?df) restaurants
    """

    result = r.reads(md)

    assert len(result.training_examples) == 4
    first = result.training_examples[0]
    assert first.data == {"intent": "restaurant_search"}
    assert first.text == "i'm looking for a place to eat"

    second = result.training_examples[1]
    assert second.data == {'intent': 'restaurant_search',
                           'entities': [
                               {'start': 31,
                                'end': 36,
                                'value': 'north',
                                'entity': 'loc-direction'}
                           ]}
    assert second.text == "i'm looking for a place in the north of town"

    third = result.training_examples[2]
    assert third.data == {'intent': 'restaurant_search',
                          'entities': [
                              {'start': 8,
                               'end': 14,
                               'value': 'chinese',
                               'entity': 'cuisine'}]}
    assert third.text == "show me chines restaurants"

    fourth = result.training_examples[3]
    assert fourth.data == {'intent': 'restaurant_search',
                           'entities': [
                               {'start': 8,
                                'end': 14,
                                'value': '43er*+?df',
                                'entity': '22_ab-34*3.A'}]}
    assert fourth.text == "show me chines restaurants"
Exemple #10
0
def test_markdown_entity_regex(
    example: Text,
    expected_entities: Optional[List[Dict[Text, Any]]],
    expected_text: Text,
):
    r = MarkdownReader()

    md = f"""
## intent:test-intent
- {example}
    """

    result = r.reads(md)

    assert len(result.training_examples) == 1
    actual_example = result.training_examples[0]
    assert actual_example.data["intent"] == "test-intent"
    assert actual_example.data.get("entities") == expected_entities
    assert actual_example.text == expected_text