Exemple #1
0
    def get_detector_results(self, request):
        """

        Args:
            request (GetDetectorResultsRequest):

        Returns:
            GetDetectorResultsResponse
        """
        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()

        detections = Detections()

        try:
            image = ros_numpy.numpify(request.image)
            if request.image.encoding == "rgb8":
                image = image[..., ::-1]
            predictions = self.predictor(image)
            self.currently_busy.clear()

            if "instances" in predictions:
                instances = predictions["instances"].to("cpu")
                boxes = np.asarray(instances.pred_boxes.tensor) if instances.has("pred_boxes") else None

                if len(boxes) == 0:
                    return GetDetectorResultsResponse(status=ServiceStatus(), results=detections)

                scores = instances.scores if instances.has("scores") else None
                classes = instances.pred_classes if instances.has("pred_classes") else None
                masks = np.asarray(instances.pred_masks) if instances.has("pred_masks") else [None] * len(boxes)

                # if instances.has("pred_classes"):
                #     masks = [GenericMask(x, *x.shape) for x in np.asarray(instances.pred_masks)]
                # else:
                #     masks = [None] * len(boxes)

                for score, cls, bbox, mask in zip(scores, classes, boxes, masks):
                    x1, y1, x2, y2 = bbox
                    yv, xv = [], []
                    if mask is not None:
                        v = np.where(mask != 0)
                        if v:
                            yv, xv = v
                    roi = RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2)
                    seg_roi = SegmentOfInterest(x=xv, y=yv)
                    detections.objects.append(Detection(roi=roi, seg_roi=seg_roi, id=self._new_id(), track_id=-1,
                                                        confidence=score, class_name=self.classes[cls]))
        except Exception as e:
            print("Detectron2Server error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True), results=detections)

        return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True), results=detections)
Exemple #2
0
 def __init__(self, rate=30):
     # Extra initialisation done here
     status_msg = ServiceStatus(OKAY=True, ERROR=False, BUSY=False)
     self.default_response = GetDetectorResultsResponse(status=status_msg)
     self._hz_limit = rospy.Rate(rate)
     # Base class must be called at the end due to self.service_server.spin()
     BaseDetectionServer.__init__(self)
Exemple #3
0
    def get_detector_results(self, request):
        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=DetectionStatus(BUSY=True))
        self.currently_busy.set()

        response = GetDetectorResultsResponse(status=DetectionStatus(ERROR=True))
        class_labels = list(self.model.CLASSES)
        response.detections = Detections(header=request.image.header)

        rgb_image = self.numpify(request.image)
        # Get results from detection backend and mark service as available (since GPU memory is the constraint here)
        result = self.inference_detector(self.model, rgb_image)
        self.currently_busy.clear()

        # Convert mmdetection results to annotation results
        if isinstance(result, tuple):
            # Response should be bboxes = [[x1, y1, x2, y2, score, class_id] ...]
            bounding_boxes = result[0]
            masks = result[1]
            if len(bounding_boxes) != len(masks) or len(bounding_boxes[0]) != len(masks[0]):
                rospy.logerr("Bounding boxes and masks are of different lengths {} and {}".format(len(bounding_boxes),
                                                                                                  len(masks)))
                return response
        else:
            bounding_boxes = result
            masks = None

        # Parse results into ObjectDetection method
        # Create bounding boxes list of [x1, y1, x2, y2, score, class_id]
        n_classes = len(bounding_boxes)
        for class_id in range(n_classes):
            n_detections = len(bounding_boxes[class_id])
            for detection_id in range(n_detections):
                bbox = bounding_boxes[class_id][detection_id]
                mask = None if masks is None else masks[class_id][detection_id]

                if bbox[-1] > request.score_thresh:
                    det_info = DetectionInfo(score=bbox[4], class_id=class_id, class_name=class_labels[class_id],
                                             detection_id="")
                    det = Detection(info=det_info)
                    det.roi = RegionOfInterest(x1=bbox[0], y1=bbox[1], x2=bbox[2], y2=bbox[3])
                    if mask is not None:
                        y_p, x_p = self.mask_decode(mask)
                        det.seg_roi = SegmentOfInterest(x=x_p, y=y_p, score=bbox[4], class_id=class_id)
                    response.detections.detections.append(det)
        response.status = DetectionStatus(OKAY=True)
        return response
    def get_detector_results(self, request):
        """
        Args:
            request (GetDetectorResultsRequest):
        Returns:
            GetDetectorResultsResponse
        """
        try:
            import numpy as np
        except ImportError:
            raise

        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()
        detections_msg = Detections()
        try:
            image = ros_numpy.numpify(request.image)
            if request.image.encoding == "rgb8":
                image = image[..., ::-1]

            self.mot.step(image)
            for detection in self.mot.detections:
                x1, y1, x2, y2 = detection[0][0], \
                detection[0][1], \
                detection[0][2], \
                detection[0][3]
                if detection[1] == 0:
                    class_ = "Ripe Strawberry"
                else:
                    class_ = "unripe"
                detections_msg.objects.append(
                    Detection(roi=RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2),
                              seg_roi=SegmentOfInterest(x=[], y=[]),
                              id=self._new_id(),
                              track_id=-1,
                              confidence=detection[2],
                              class_name=class_))
        except Exception as e:
            self.currently_busy.clear()
            print("TensorrtServer error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True),
                                              results=detections_msg)
        self.currently_busy.clear()
        return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True),
                                          results=detections_msg)
    def get_detector_results(self, request):
        """

        Args:
            request (GetDetectorResultsRequest):

        Returns:
            GetDetectorResultsResponse
        """
        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()

        detections = Detections()

        try:
            rois  = []
            poses = []
            for pose in self.obj_poses:
                transform = self.tf_buffer.lookup_transform(self.ref_frame, 'odom', rospy.Time())
                pose = tf2_geometry_msgs.do_transform_pose(pose, transform).pose
                x1 = pose.position.x - 0.03
                x2 = pose.position.x + 0.03
                y1 = pose.position.y - 0.03
                y2 = pose.position.y + 0.03
                z1 = pose.position.z - 0.03
                z2 = pose.position.z + 0.03
                roi = RegionOfInterest(x1=x1, y1=y1, z1=z1, x2=x2, y2=y2, z2=z2)
                rois.append(roi)
                poses.append(pose)

            self.currently_busy.clear()

            # Fill in the detections message
            for roi, pose, track_id in zip(rois, poses, self.obj_ids):
                seg_roi = SegmentOfInterest(x=[], y=[])
                score = 1.0
                detections.objects.append(Detection(roi=roi, seg_roi=seg_roi, pose=pose,
                                                    id=self._new_id(), track_id=track_id,
                                                    confidence=score, class_name=self.classes[0]))

            return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True), results=detections)
        except Exception as e:
            print("GazeboRenderedBerriesServer error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True), results=detections)
 def get_detector_results(self, request):
     """
     Args:
         request (GetDetectorResultsRequest):
     Returns:
         GetDetectorResultsResponse
     """
     try:
         import numpy as np
     except ImportError:
         raise
     
     if self.currently_busy.is_set():
         return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
     self.currently_busy.set()
     detections = Detections()
     try:
         image = ros_numpy.numpify(request.image)
         if request.image.encoding == "rgb8":
             image = image[..., ::-1]
         self.mot.step(image)
         for track in self.mot.visible_tracks:
             confidence = 0.99
             if track.label == 0:
                 class_name = "Ripe Strawberry"
             else: 
                 class_name = "Unripe Strawberry"
             track_id = track.trk_id
             roi = RegionOfInterest(x1=track.tlbr[0], y1=track.tlbr[1], x2=track.tlbr[2], y2=track.tlbr[3])
             seg_roi = SegmentOfInterest(x=[], y=[])
             detections.objects.append(Detection(roi=roi, seg_roi=seg_roi, id=self._new_id(), track_id=track_id,
                                                 confidence=confidence, class_name=class_name))
     except Exception as e:
         self.currently_busy.clear()
         print("FruitCastServer error: ", e)
         return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True), results=detections)
     self.currently_busy.clear()
     return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True), results=detections)
Exemple #7
0
    def get_detector_results(self, request):
        """

        Args:
            request (GetDetectorResultsRequest):

        Returns:
            GetDetectorResultsResponse
        """
        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=DetectionStatus(
                BUSY=True))
        self.currently_busy.set()

        detections = Detections(header=request.image.header)

        try:
            image = ros_numpy.numpify(request.image)
            predictions = self.predictor(image)
            self.currently_busy.clear()

            if "instances" in predictions:
                instances = predictions["instances"].to("cpu")
                boxes = np.asarray(instances.pred_boxes.tensor
                                   ) if instances.has("pred_boxes") else None

                if len(boxes) == 0:
                    return GetDetectorResultsResponse(status=DetectionStatus(),
                                                      detections=detections)

                scores = instances.scores if instances.has("scores") else None
                classes = instances.pred_classes if instances.has(
                    "pred_classes") else None
                labels = [
                    "{} {}".format(self.classes[cls_id], scores[idx])
                    for idx, cls_id in enumerate(classes)
                ]
                masks = np.asarray(instances.pred_masks) if instances.has(
                    "pred_masks") else [None] * len(boxes)

                # if instances.has("pred_classes"):
                #     masks = [GenericMask(x, *x.shape) for x in np.asarray(instances.pred_masks)]
                # else:
                #     masks = [None] * len(boxes)

                for score, cls, bbox, mask in zip(scores, classes, boxes,
                                                  masks):
                    x1, y1, x2, y2 = bbox
                    yv, xv = [], []
                    if mask is not None:
                        v = np.where(mask != 0)
                        if v:
                            yv, xv = v
                    roi = RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2)
                    seg_roi = SegmentOfInterest(x=xv, y=yv)
                    info = DetectionInfo(score=score,
                                         class_id=cls,
                                         class_name=self.classes[cls])
                    detections.detections.append(
                        Detection(roi=roi, seg_roi=seg_roi, info=info))
        except Exception as e:
            print("Detectron2Server error: ", e)
            return GetDetectorResultsResponse(
                status=DetectionStatus(ERROR=True), detections=detections)

        return GetDetectorResultsResponse(status=DetectionStatus(OKAY=True),
                                          detections=detections)
Exemple #8
0
    def get_detector_results(self, request):
        """

        Args:
            request (GetDetectorResultsRequest):

        Returns:
            GetDetectorResultsResponse
        """
        try:
            import torch
            import numpy as np
            from berry_segmentation.inference_color import inference_one, visualise_mask
            import PIL
            import cv2
            from skimage import measure

        except ImportError:
            raise

        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()

        detections = Detections()
        try:
            image = ros_numpy.numpify(request.image)

            img = PIL.Image.fromarray(image.astype('uint8'), 'RGB')

            mask = inference_one(net=self.net,
                                 image=img,
                                 device=self.device,
                                 config=self.config)
            for m, c in zip(mask[1:], self.config.class_names):
                m = m.astype('int')
                if c == 'flesh':
                    c = 'flesh_ripe'
                # seg_roi = cv2.findContours(m, cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
                contours = measure.find_contours(m, 0.5)
                # for contour in contours:
                #     contour = np.flip(contour, axis=1)
                #     segmentation = contour.ravel().tolist()
                if contours == []:
                    seg_roi = SegmentOfInterest(x=[], y=[])
                    roi = RegionOfInterest(x1=0, x2=0, y1=0, y2=0)
                else:
                    y_vals = [int(coord[0]) for coord in contours[0]]
                    x_vals = [int(coord[1]) for coord in contours[0]]
                    seg_roi = SegmentOfInterest(x=x_vals, y=y_vals)
                    roi = RegionOfInterest(x1=min(x_vals),
                                           y1=min(y_vals),
                                           x2=max(x_vals),
                                           y2=max(y_vals))
                detections.objects.append(
                    Detection(roi=roi,
                              seg_roi=seg_roi,
                              class_name=c,
                              confidence=1,
                              id=self._new_id(),
                              track_id=1))

            calyx_distance = 0.001  #metres
            no_of_berries = 1
            detections.gripper.no_of_berries = no_of_berries
            detections.gripper.calyx_distance = 0.001
            self.currently_busy.clear()
        except Exception as e:
            print("UNetServer error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True),
                                              results=detections)

        return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True),
                                          results=detections)
    def get_detector_results(self, request):
        """
        Args:
            request (GetDetectorResultsRequest):
        Returns:
            GetDetectorResultsResponse
        """
        try:
            import cv2
        except ImportError:
            raise

        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()
        detections_msg = Detections()
        try:
            frame = ros_numpy.numpify(request.image)
            original_shape = frame.shape
            frame = cv2.resize(frame, (self.image_size, int(self.image_size*0.75)))
            self.darknet.copy_image_from_bytes(self.darknet_image, frame.tobytes())   
            detections_yolo = self.darknet.detect_image(self.network, self.class_names, self.darknet_image, thresh=0.7)
            boxs = []
            confidences = []
            class_name= []
            for detection in detections_yolo:   
                if detection[0] != "ripe":  # only track ripe berry whose id is 0    
                    x1, y1, x2, y2 = self._convertBack(detection[2][0], \
                    detection[2][1], \
                    detection[2][2], \
                    detection[2][3])
                    x1 = x1*original_shape[1]/frame.shape[1]
                    x2 = x2*original_shape[1]/frame.shape[1]
                    y1 = y1*original_shape[0]/frame.shape[0]
                    y2 = y2*original_shape[0]/frame.shape[0]
                    x1 = max(min(original_shape[1]-1, x1), 1)
                    x2 = max(min(original_shape[1]-1, x2), 1)
                    y1 = max(min(original_shape[0]-1, y1), 1)
                    y2 = max(min(original_shape[0]-1, y2), 1)
                    detections_msg.objects.append(Detection(roi=RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2), seg_roi=SegmentOfInterest(x=[], y=[]), id=self._new_id(), track_id=-1, confidence=float(detection[1])/100, class_name="unripe"))                        
                    continue
                confidences.append(float(detection[1])/100)
                class_name.append(detection[0])
                bounds = detection[2]   
                xCoord = int(bounds[0] - bounds[2] / 2)
                yCoord = int(bounds[1] - bounds[3] / 2)
                boxs.append([xCoord, yCoord, int(bounds[2]), int(bounds[3])])
            features = self.encoder(frame, boxs)
            detections = [self.deep_detection(bbox, confidence, feature) for bbox, confidence, feature in
                        zip(boxs, confidences, features)]
            # Run non-maxima suppression.
            boxes = np.array([d.tlwh for d in detections])
            scores = np.array([d.confidence for d in detections])
            indices = self.preprocessing.non_max_suppression(boxes, self.nms_max_overlap, scores)
            detections = [detections[i] for i in indices]
            # Call the tracker
            self.tracker.predict()
            self.tracker.update(detections)
            for track in self.tracker.tracks:
                if not track.is_confirmed() or track.time_since_update > 1:
                    track_id = 0
                    continue
                track_id = (int(track.track_id))
                bbox = track.to_tlbr()
                x1, y1, x2, y2 = bbox[0],bbox[1],bbox[2],bbox[3]   
                x1 = x1*original_shape[1]/frame.shape[1] 
                x2 = x2*original_shape[1]/frame.shape[1]  
                y1 = y1*original_shape[0]/frame.shape[0]  
                y2 = y2*original_shape[0]/frame.shape[0]
                x1 = max(min(original_shape[1]-1, x1), 1)
                x2 = max(min(original_shape[1]-1, x2), 1)
                y1 = max(min(original_shape[0]-1, y1), 1)
                y2 = max(min(original_shape[0]-1, y2), 1)                     
                roi = (RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2))
                detections_msg.objects.append(Detection(roi=roi, seg_roi=SegmentOfInterest(x=[], y=[]), id=self._new_id(), track_id=track_id,confidence=0.99, class_name="Ripe Strawberry"))
            self.currently_busy.clear()
        except Exception as e:
            print("FruitCastServer error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True), results=detections_msg)
        return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True), results=detections_msg)
    def get_detector_results(self, request):
        """
        Args:
            request (GetDetectorResultsRequest):
        Returns:
            GetDetectorResultsResponse
        """
        try:
            import numpy as np
        except ImportError:
            raise

        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()
        detections_msg = Detections()
        try:
            image = ros_numpy.numpify(request.image)
            if request.image.encoding == "rgb8":
                image = image[..., ::-1]
            boxs = []
            confidences = []
            class_name = []
            self.mot.step(image)
            for detection in self.mot.detections:
                if detection[
                        1] != "ripe":  # only track ripe berry whose class is "ripe"
                    x1, y1, x2, y2 = detection[0][0], \
                    detection[0][1], \
                    detection[0][2], \
                    detection[0][3]
                    detections_msg.objects.append(
                        Detection(roi=RegionOfInterest(x1=x1,
                                                       y1=y1,
                                                       x2=x2,
                                                       y2=y2),
                                  seg_roi=SegmentOfInterest(x=[], y=[]),
                                  id=self._new_id(),
                                  track_id=-1,
                                  confidence=detection[2],
                                  class_name="unripe"))
                    continue
                confidences.append(detection[2])
                class_name.append(detection[1])
                bounds = detection[0]
                h = bounds[3] - bounds[1]
                w = bounds[2] - bounds[0]
                boxs.append([int(bounds[0]), int(bounds[1]), int(w), int(h)])
            features = self.encoder(image, boxs)
            detections = [
                self.deep_detection(bbox, confidence, feature) for bbox,
                confidence, feature in zip(boxs, confidences, features)
            ]
            # Run non-maxima suppression.
            boxes = np.array([d.tlwh for d in detections])
            scores = np.array([d.confidence for d in detections])
            indices = self.preprocessing.non_max_suppression(
                boxes, self.nms_max_overlap, scores)
            detections = [detections[i] for i in indices]
            # Call the tracker
            self.tracker.predict()
            self.tracker.update(detections)
            for track in self.tracker.tracks:
                if not track.is_confirmed() or track.time_since_update > 1:
                    track_id = 0
                    continue
                track_id = (int(track.track_id))
                bbox = track.to_tlbr()
                x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3]
                x1 = max(min(self.image_width - 1, x1), 1)
                x2 = max(min(self.image_width - 1, x2), 1)
                y1 = max(min(self.image_height - 1, y1), 1)
                y2 = max(min(self.image_height - 1, y2), 1)
                roi = (RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2))
                detections_msg.objects.append(
                    Detection(roi=roi,
                              seg_roi=SegmentOfInterest(x=[], y=[]),
                              id=self._new_id(),
                              track_id=track_id,
                              confidence=0.99,
                              class_name="Ripe Strawberry"))
        except Exception as e:
            self.currently_busy.clear()
            print("FruitCastServer error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True),
                                              results=detections_msg)
        self.currently_busy.clear()
        return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True),
                                          results=detections_msg)
Exemple #11
0
    def get_detector_results(self, request):
        """

        Args:
            request (GetDetectorResultsRequest):

        Returns:
            GetDetectorResultsResponse
        """
        try:
            import torch
            from yolov5.utils.general import non_max_suppression
            from yolov5.utils.general import scale_coords
            from yolov5.utils.datasets import letterbox
            import numpy as np
        except ImportError:
            raise

        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()

        detections = Detections()

        try:
            image = ros_numpy.numpify(request.image)
            if request.image.encoding == "rgb8":
                image = image[..., ::-1]

            original_shape = image.shape
            img = letterbox(image, new_shape=self.image_size)[0]
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB
            img = np.ascontiguousarray(img)

            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            with torch.no_grad():
                pred = self.model(img, augment=False)[0]
            pred = non_max_suppression(pred, self.conf_thresh, self.iou_thresh, agnostic=False)

            for i, det in enumerate(pred):
                if det is not None and len(det):
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], original_shape).round()

                    for x1, y1, x2, y2, conf, cls in reversed(det):
                        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
                        confidence = float(conf)
                        class_name = self.names[int(cls)]
                        roi = RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2)
                        seg_roi = SegmentOfInterest(x=[], y=[])
                        detections.objects.append(Detection(roi=roi, seg_roi=seg_roi, id=self._new_id(), track_id=-1,
                                                            confidence=confidence, class_name=class_name))
                self.currently_busy.clear()
        except Exception as e:
            print("FruitCastServer error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True), results=detections)

        return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True), results=detections)