def test_calculate_image_frequency_moments_1(self):
     frequency = numpy.linspace(0.9e8, 1.1e8, 9)
     cube = create_low_test_image_from_gleam(npixel=512,
                                             cellsize=0.0001,
                                             frequency=frequency,
                                             flux_limit=1.0)
     log.debug(
         export_image_to_fits(cube,
                              fitsfile='%s/test_moments_1_cube.fits' %
                              (self.dir)))
     original_cube = copy_image(cube)
     moment_cube = calculate_image_frequency_moments(cube, nmoment=1)
     log.debug(
         export_image_to_fits(
             moment_cube,
             fitsfile='%s/test_moments_1_moment_cube.fits' % (self.dir)))
     reconstructed_cube = calculate_image_from_frequency_moments(
         cube, moment_cube)
     log.debug(
         export_image_to_fits(
             reconstructed_cube,
             fitsfile='%s/test_moments_1_reconstructed_cube.fits' %
             (self.dir)))
     error = numpy.std(reconstructed_cube.data - original_cube.data)
     assert error < 0.2
Exemple #2
0
def deconvolve_cube(dirty: Image,
                    psf: Image,
                    prefix='',
                    **kwargs) -> (Image, Image):
    """ Clean using a variety of algorithms
    
    The algorithms available are:
    
    hogbom: Hogbom CLEAN See: Hogbom CLEAN A&A Suppl, 15, 417, (1974)

    hogbom-complex: Complex Hogbom CLEAN of stokesIQUV image
    
    msclean: MultiScale CLEAN See: Cornwell, T.J., Multiscale CLEAN (IEEE Journal of Selected Topics in Sig Proc,
    2008 vol. 2 pp. 793-801)

    mfsmsclean, msmfsclean, mmclean: MultiScale Multi-Frequency See: U. Rau and T. J. Cornwell,
    “A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry,” A&A 532,
    A71 (2011).
    
    For example::
    
        comp, residual = deconvolve_cube(dirty, psf, niter=1000, gain=0.7, algorithm='msclean',
                                         scales=[0, 3, 10, 30], threshold=0.01)
                                         
    For the MFS clean, the psf must have number of channels >= 2 * nmoment
    
    :param dirty: Image dirty image
    :param psf: Image Point Spread Function
    :param window_shape: Window image (Bool) - clean where True
    :param mask: Window in the form of an image, overrides window_shape
    :param algorithm: Cleaning algorithm: 'msclean'|'hogbom'|'mfsmsclean'
    :param gain: loop gain (float) 0.7
    :param threshold: Clean threshold (0.0)
    :param fractional_threshold: Fractional threshold (0.01)
    :param scales: Scales (in pixels) for multiscale ([0, 3, 10, 30])
    :param nmoment: Number of frequency moments (default 3)
    :param findpeak: Method of finding peak in mfsclean: 'Algorithm1'|'ASKAPSoft'|'CASA'|'RASCIL', Default is RASCIL.
    :return: component image, residual image

    See also
        :py:func:`rascil.processing_components.arrays.cleaners.hogbom`
        :py:func:`rascil.processing_components.arrays.cleaners.hogbom_complex`
        :py:func:`rascil.processing_components.arrays.cleaners.msclean`
        :py:func:`rascil.processing_components.arrays.cleaners.msmfsclean`

    """

    assert isinstance(dirty, Image), dirty
    assert image_is_canonical(dirty)
    assert isinstance(psf, Image), psf
    assert image_is_canonical(psf)

    window_shape = get_parameter(kwargs, 'window_shape', None)
    if window_shape == 'quarter':
        log.info("deconvolve_cube %s: window is inner quarter" % prefix)
        qx = dirty.shape[3] // 4
        qy = dirty.shape[2] // 4
        window = numpy.zeros_like(dirty.data)
        window[..., (qy + 1):3 * qy, (qx + 1):3 * qx] = 1.0
        log.info(
            'deconvolve_cube %s: Cleaning inner quarter of each sky plane' %
            prefix)
    elif window_shape == 'no_edge':
        edge = get_parameter(kwargs, 'window_edge', 16)
        nx = dirty.shape[3]
        ny = dirty.shape[2]
        window = numpy.zeros_like(dirty.data)
        window[..., (edge + 1):(ny - edge), (edge + 1):(nx - edge)] = 1.0
        log.info(
            'deconvolve_cube %s: Window omits %d-pixel edge of each sky plane'
            % (prefix, edge))
    elif window_shape is None:
        log.info("deconvolve_cube %s: Cleaning entire image" % prefix)
        window = None
    else:
        raise ValueError("Window shape %s is not recognized" % window_shape)

    mask = get_parameter(kwargs, 'mask', None)
    if isinstance(mask, Image):
        if window is not None:
            log.warning(
                'deconvolve_cube %s: Overriding window_shape with mask image' %
                (prefix))
        window = mask.data

    psf_support = get_parameter(kwargs, 'psf_support',
                                max(dirty.shape[2] // 2, dirty.shape[3] // 2))
    if (psf_support <= psf.shape[2] // 2) and (
        (psf_support <= psf.shape[3] // 2)):
        centre = [psf.shape[2] // 2, psf.shape[3] // 2]
        psf.data = psf.data[..., (centre[0] - psf_support):(centre[0] +
                                                            psf_support),
                            (centre[1] - psf_support):(centre[1] +
                                                       psf_support)]
        log.info('deconvolve_cube %s: PSF support = +/- %d pixels' %
                 (prefix, psf_support))
        log.info('deconvolve_cube %s: PSF shape %s' %
                 (prefix, str(psf.data.shape)))

    algorithm = get_parameter(kwargs, 'algorithm', 'msclean')

    if algorithm == 'msclean':
        log.info(
            "deconvolve_cube %s: Multi-scale clean of each polarisation and channel separately"
            % prefix)
        gain = get_parameter(kwargs, 'gain', 0.7)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        scales = get_parameter(kwargs, 'scales', [0, 3, 10, 30])
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.01)
        assert 0.0 < fracthresh < 1.0

        comp_array = numpy.zeros_like(dirty.data)
        residual_array = numpy.zeros_like(dirty.data)
        for channel in range(dirty.data.shape[0]):
            for pol in range(dirty.data.shape[1]):
                if psf.data[channel, pol, :, :].max():
                    log.info(
                        "deconvolve_cube %s: Processing pol %d, channel %d" %
                        (prefix, pol, channel))
                    if window is None:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            msclean(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                    None, gain, thresh, niter, scales, fracthresh, prefix)
                    else:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            msclean(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                    window[channel, pol, :, :], gain, thresh, niter, scales, fracthresh,
                                    prefix)
                else:
                    log.info(
                        "deconvolve_cube %s: Skipping pol %d, channel %d" %
                        (prefix, pol, channel))

        comp_image = create_image_from_array(comp_array, dirty.wcs,
                                             dirty.polarisation_frame)
        residual_image = create_image_from_array(residual_array, dirty.wcs,
                                                 dirty.polarisation_frame)

    elif algorithm == 'msmfsclean' or algorithm == 'mfsmsclean' or algorithm == 'mmclean':
        findpeak = get_parameter(kwargs, "findpeak", 'RASCIL')

        log.info(
            "deconvolve_cube %s: Multi-scale multi-frequency clean of each polarisation separately"
            % prefix)
        nmoment = get_parameter(kwargs, "nmoment", 3)
        assert nmoment >= 1, "Number of frequency moments must be greater than or equal to one"
        nchan = dirty.shape[0]
        assert nchan > 2 * (nmoment -
                            1), "Require nchan %d > 2 * (nmoment %d - 1)" % (
                                nchan, 2 * (nmoment - 1))
        dirty_taylor = calculate_image_frequency_moments(dirty,
                                                         nmoment=nmoment)
        if nmoment > 1:
            psf_taylor = calculate_image_frequency_moments(psf,
                                                           nmoment=2 * nmoment)
        else:
            psf_taylor = calculate_image_frequency_moments(psf, nmoment=1)
        psf_peak = numpy.max(psf_taylor.data)
        dirty_taylor.data /= psf_peak
        psf_taylor.data /= psf_peak
        log.info("deconvolve_cube %s: Shape of Dirty moments image %s" %
                 (prefix, str(dirty_taylor.shape)))
        log.info("deconvolve_cube %s: Shape of PSF moments image %s" %
                 (prefix, str(psf_taylor.shape)))
        gain = get_parameter(kwargs, 'gain', 0.7)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        scales = get_parameter(kwargs, 'scales', [0, 3, 10, 30])
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1)
        assert 0.0 < fracthresh < 1.0

        comp_array = numpy.zeros(dirty_taylor.data.shape)
        residual_array = numpy.zeros(dirty_taylor.data.shape)
        for pol in range(dirty_taylor.data.shape[1]):
            # Always use the Stokes I PSF
            if psf_taylor.data[0, 0, :, :].max():
                log.info("deconvolve_cube %s: Processing pol %d" %
                         (prefix, pol))
                if window is None:
                    comp_array[:, pol, :, :], residual_array[:, pol, :, :] = \
                        msmfsclean(dirty_taylor.data[:, pol, :, :], psf_taylor.data[:, 0, :, :],
                                   None, gain, thresh, niter, scales, fracthresh, findpeak, prefix)
                else:
                    log.info(
                        'deconvolve_cube %s: Clean window has %d valid pixels'
                        % (prefix, int(numpy.sum(window[0, pol]))))
                    comp_array[:, pol, :, :], residual_array[:, pol, :, :] = \
                        msmfsclean(dirty_taylor.data[:, pol, :, :], psf_taylor.data[:, 0, :, :],
                                   window[0, pol, :, :], gain, thresh, niter, scales, fracthresh,
                                   findpeak, prefix)
            else:
                log.info("deconvolve_cube %s: Skipping pol %d" % (prefix, pol))

        comp_image = create_image_from_array(comp_array, dirty_taylor.wcs,
                                             dirty.polarisation_frame)
        residual_image = create_image_from_array(residual_array,
                                                 dirty_taylor.wcs,
                                                 dirty.polarisation_frame)

        return_moments = get_parameter(kwargs, "return_moments", False)
        if not return_moments:
            log.info("deconvolve_cube %s: calculating spectral cubes" % prefix)
            comp_image = calculate_image_from_frequency_moments(
                dirty, comp_image)
            residual_image = calculate_image_from_frequency_moments(
                dirty, residual_image)
        else:
            log.info("deconvolve_cube %s: constructed moment cubes" % prefix)

    elif algorithm == 'hogbom':
        log.info(
            "deconvolve_cube %s: Hogbom clean of each polarisation and channel separately"
            % prefix)
        gain = get_parameter(kwargs, 'gain', 0.1)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1)
        assert 0.0 < fracthresh < 1.0

        comp_array = numpy.zeros(dirty.data.shape)
        residual_array = numpy.zeros(dirty.data.shape)
        for channel in range(dirty.data.shape[0]):
            for pol in range(dirty.data.shape[1]):
                if psf.data[channel, pol, :, :].max():
                    log.info(
                        "deconvolve_cube %s: Processing pol %d, channel %d" %
                        (prefix, pol, channel))
                    if window is None:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                   None, gain, thresh, niter, fracthresh, prefix)
                    else:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                   window[channel, pol, :, :], gain, thresh, niter, fracthresh, prefix)
                else:
                    log.info(
                        "deconvolve_cube %s: Skipping pol %d, channel %d" %
                        (prefix, pol, channel))

        comp_image = create_image_from_array(comp_array, dirty.wcs,
                                             dirty.polarisation_frame)
        residual_image = create_image_from_array(residual_array, dirty.wcs,
                                                 dirty.polarisation_frame)
    elif algorithm == 'hogbom-complex':
        log.info(
            "deconvolve_cube_complex: Hogbom-complex clean of each polarisation and channel separately"
        )
        gain = get_parameter(kwargs, 'gain', 0.1)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1)
        assert 0.0 <= fracthresh < 1.0

        comp_array = numpy.zeros(dirty.data.shape)
        residual_array = numpy.zeros(dirty.data.shape)
        for channel in range(dirty.data.shape[0]):
            for pol in range(dirty.data.shape[1]):
                if pol == 0 or pol == 3:
                    if psf.data[channel, pol, :, :].max():
                        log.info(
                            "deconvolve_cube_complex: Processing pol %d, channel %d"
                            % (pol, channel))
                        if window is None:
                            comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                                hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                       None, gain, thresh, niter, fracthresh)
                        else:
                            comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                                hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                       window[channel, pol, :, :], gain, thresh, niter, fracthresh)
                    else:
                        log.info(
                            "deconvolve_cube_complex: Skipping pol %d, channel %d"
                            % (pol, channel))
                if pol == 1:
                    if psf.data[channel, 1:2, :, :].max():
                        log.info(
                            "deconvolve_cube_complex: Processing pol 1 and 2, channel %d"
                            % (channel))
                        if window is None:
                            comp_array[channel, 1, :, :], comp_array[
                                channel, 2, :, :], residual_array[
                                    channel, 1, :, :], residual_array[
                                        channel, 2, :, :] = hogbom_complex(
                                            dirty.data[channel, 1, :, :],
                                            dirty.data[channel, 2, :, :],
                                            psf.data[channel, 1, :, :],
                                            psf.data[channel, 2, :, :], None,
                                            gain, thresh, niter, fracthresh)
                        else:
                            comp_array[channel, 1, :, :], comp_array[
                                channel, 2, :, :], residual_array[
                                    channel, 1, :, :], residual_array[
                                        channel, 2, :, :] = hogbom_complex(
                                            dirty.data[channel, 1, :, :],
                                            dirty.data[channel, 2, :, :],
                                            psf.data[channel, 1, :, :],
                                            psf.data[channel, 2, :, :],
                                            window[channel, pol, :, :], gain,
                                            thresh, niter, fracthresh)
                    else:
                        log.info(
                            "deconvolve_cube_complex: Skipping pol 1 and 2, channel %d"
                            % (channel))
                if pol == 2:
                    continue

        comp_image = create_image_from_array(
            comp_array,
            dirty.wcs,
            polarisation_frame=PolarisationFrame('stokesIQUV'))
        residual_image = create_image_from_array(
            residual_array,
            dirty.wcs,
            polarisation_frame=PolarisationFrame('stokesIQUV'))

    else:
        raise ValueError('deconvolve_cube %s: Unknown algorithm %s' %
                         (prefix, algorithm))

    return comp_image, residual_image