Exemple #1
0
    def __init__(self, function, num_cpus, num_gpus, resources,
                 num_return_vals, max_calls):
        self._function = function
        self._function_descriptor = FunctionDescriptor.from_function(function)
        self._function_name = (
            self._function.__module__ + "." + self._function.__name__)
        self._num_cpus = (DEFAULT_REMOTE_FUNCTION_CPUS
                          if num_cpus is None else num_cpus)
        self._num_gpus = num_gpus
        self._resources = resources
        self._num_return_vals = (DEFAULT_REMOTE_FUNCTION_NUM_RETURN_VALS if
                                 num_return_vals is None else num_return_vals)
        self._max_calls = (DEFAULT_REMOTE_FUNCTION_MAX_CALLS
                           if max_calls is None else max_calls)
        self._decorator = getattr(function, "__ray_invocation_decorator__",
                                  None)

        ray.signature.check_signature_supported(self._function)
        self._function_signature = ray.signature.extract_signature(
            self._function)
        self._last_export_session_and_job = None
        # Override task.remote's signature and docstring
        @wraps(function)
        def _remote_proxy(*args, **kwargs):
            return self._remote(args=args, kwargs=kwargs)

        self.remote = _remote_proxy
Exemple #2
0
    def __init__(self, function, num_cpus, num_gpus, resources,
                 num_return_vals, max_calls):
        self._function = function
        self._function_descriptor = FunctionDescriptor.from_function(function)
        self._function_name = (self._function.__module__ + "." +
                               self._function.__name__)
        self._num_cpus = (DEFAULT_REMOTE_FUNCTION_CPUS
                          if num_cpus is None else num_cpus)
        self._num_gpus = num_gpus
        self._resources = resources
        self._num_return_vals = (DEFAULT_REMOTE_FUNCTION_NUM_RETURN_VALS if
                                 num_return_vals is None else num_return_vals)
        self._max_calls = (DEFAULT_REMOTE_FUNCTION_MAX_CALLS
                           if max_calls is None else max_calls)
        self._decorator = getattr(function, "__ray_invocation_decorator__",
                                  None)

        ray.signature.check_signature_supported(self._function)
        self._function_signature = ray.signature.extract_signature(
            self._function)

        # Export the function.
        worker = ray.worker.get_global_worker()
        self._last_export_session = worker._session_index
        worker.function_actor_manager.export(self)
Exemple #3
0
    def __init__(self, function, num_cpus, num_gpus, memory,
                 object_store_memory, resources, num_return_vals, max_calls):
        self._function = function
        self._function_descriptor = FunctionDescriptor.from_function(function)
        self._function_descriptor_list = (
            self._function_descriptor.get_function_descriptor_list())
        self._function_name = (self._function.__module__ + "." +
                               self._function.__name__)
        self._num_cpus = (DEFAULT_REMOTE_FUNCTION_CPUS
                          if num_cpus is None else num_cpus)
        self._num_gpus = num_gpus
        self._memory = memory
        if object_store_memory is not None:
            raise NotImplementedError(
                "setting object_store_memory is not implemented for tasks")
        self._object_store_memory = None
        self._resources = resources
        self._num_return_vals = (DEFAULT_REMOTE_FUNCTION_NUM_RETURN_VALS if
                                 num_return_vals is None else num_return_vals)
        self._max_calls = (DEFAULT_REMOTE_FUNCTION_MAX_CALLS
                           if max_calls is None else max_calls)
        self._decorator = getattr(function, "__ray_invocation_decorator__",
                                  None)

        self._function_signature = ray.signature.extract_signature(
            self._function)

        self._last_export_session_and_job = None
        # Override task.remote's signature and docstring
        @wraps(function)
        def _remote_proxy(*args, **kwargs):
            return self._remote(args=args, kwargs=kwargs)

        self.remote = _remote_proxy
Exemple #4
0
    def __init__(self, function, num_cpus, num_gpus, resources,
                 num_return_vals, max_calls):
        self._function = function
        self._function_descriptor = FunctionDescriptor.from_function(function)
        self._function_name = (
            self._function.__module__ + '.' + self._function.__name__)
        self._num_cpus = (DEFAULT_REMOTE_FUNCTION_CPUS
                          if num_cpus is None else num_cpus)
        self._num_gpus = num_gpus
        self._resources = resources
        self._num_return_vals = (DEFAULT_REMOTE_FUNCTION_NUM_RETURN_VALS if
                                 num_return_vals is None else num_return_vals)
        self._max_calls = (DEFAULT_REMOTE_FUNCTION_MAX_CALLS
                           if max_calls is None else max_calls)

        ray.signature.check_signature_supported(self._function)
        self._function_signature = ray.signature.extract_signature(
            self._function)

        # # Export the function.
        worker = ray.worker.get_global_worker()
        worker.function_actor_manager.export(self)
Exemple #5
0
    def _remote(self,
                args=None,
                kwargs=None,
                num_return_vals=None,
                is_direct_call=None,
                num_cpus=None,
                num_gpus=None,
                memory=None,
                object_store_memory=None,
                resources=None,
                max_retries=None):
        """Submit the remote function for execution."""
        worker = ray.worker.get_global_worker()
        worker.check_connected()

        # If this function was not exported in this session and job, we need to
        # export this function again, because the current GCS doesn't have it.
        if self._last_export_session_and_job != worker.current_session_and_job:
            # There is an interesting question here. If the remote function is
            # used by a subsequent driver (in the same script), should the
            # second driver pickle the function again? If yes, then the remote
            # function definition can differ in the second driver (e.g., if
            # variables in its closure have changed). We probably want the
            # behavior of the remote function in the second driver to be
            # independent of whether or not the function was invoked by the
            # first driver. This is an argument for repickling the function,
            # which we do here.
            self._pickled_function = pickle.dumps(self._function)

            self._function_descriptor = FunctionDescriptor.from_function(
                self._function, self._pickled_function)
            self._function_descriptor_list = (
                self._function_descriptor.get_function_descriptor_list())

            self._last_export_session_and_job = worker.current_session_and_job
            worker.function_actor_manager.export(self)

        kwargs = {} if kwargs is None else kwargs
        args = [] if args is None else args

        if num_return_vals is None:
            num_return_vals = self._num_return_vals
        if is_direct_call is None:
            is_direct_call = self.direct_call_enabled
        if max_retries is None:
            max_retries = self._max_retries

        resources = ray.utils.resources_from_resource_arguments(
            self._num_cpus, self._num_gpus, self._memory,
            self._object_store_memory, self._resources, num_cpus, num_gpus,
            memory, object_store_memory, resources)

        def invocation(args, kwargs):
            if not args and not kwargs and not self._function_signature:
                list_args = []
            else:
                list_args = ray.signature.flatten_args(
                    self._function_signature, args, kwargs)

            if worker.mode == ray.worker.LOCAL_MODE:
                object_ids = worker.local_mode_manager.execute(
                    self._function, self._function_descriptor, args, kwargs,
                    num_return_vals)
            else:
                object_ids = worker.core_worker.submit_task(
                    self._function_descriptor_list, list_args, num_return_vals,
                    is_direct_call, resources, max_retries)

            if len(object_ids) == 1:
                return object_ids[0]
            elif len(object_ids) > 1:
                return object_ids

        if self._decorator is not None:
            invocation = self._decorator(invocation)

        return invocation(args, kwargs)