type=int, default=100000, help="Number of timesteps to train.") parser.add_argument("--stop-reward", type=float, default=35.0, help="Reward at which we stop training.") if __name__ == "__main__": args = parser.parse_args() ray.init() # episode-len=100 # num-envs=4 (note that these are fake-envs as the MockVectorEnv only # carries a single CartPole sub-env in it). tune.register_env("custom_vec_env", lambda env_ctx: MockVectorEnv(100, 4)) config = { "env": "custom_vec_env", # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_workers": 2, # parallelism "framework": args.framework, } stop = { "training_iteration": args.stop_iters, "timesteps_total": args.stop_timesteps, "episode_reward_mean": args.stop_reward, }