def get_model(registry, inputs, num_outputs, options=dict()): """Returns a suitable model conforming to given input and output specs. Args: registry (obj): Registry of named objects (ray.tune.registry). inputs (Tensor): The input tensor to the model. num_outputs (int): The size of the output vector of the model. options (dict): Optional args to pass to the model constructor. Returns: model (Model): Neural network model. """ if "custom_model" in options: model = options["custom_model"] print("Using custom model {}".format(model)) return registry.get(RLLIB_MODEL, model)(inputs, num_outputs, options) obs_rank = len(inputs.shape) - 1 if obs_rank > 1: return VisionNetwork(inputs, num_outputs, options) return FullyConnectedNetwork(inputs, num_outputs, options)
def get_model(registry, inputs, num_outputs, options={}): """Returns a suitable model conforming to given input and output specs. Args: registry (obj): Registry of named objects (ray.tune.registry). inputs (Tensor): The input tensor to the model. num_outputs (int): The size of the output vector of the model. options (dict): Optional args to pass to the model constructor. Returns: model (Model): Neural network model. """ if "custom_model" in options: model = options["custom_model"] print("Using custom model {}".format(model)) return registry.get(RLLIB_MODEL, model)(inputs, num_outputs, options) obs_rank = len(inputs.shape) - 1 # num_outputs > 1 used to avoid hitting this with the value function if isinstance( options.get("custom_options", {}).get( "multiagent_fcnet_hiddens", 1), list) and num_outputs > 1: return MultiAgentFullyConnectedNetwork(inputs, num_outputs, options) if obs_rank > 1: return VisionNetwork(inputs, num_outputs, options) return FullyConnectedNetwork(inputs, num_outputs, options)
def _get_model(inputs, num_outputs, options, state_in, seq_lens): if "custom_model" in options: model = options["custom_model"] print("Using custom model {}".format(model)) return _global_registry.get(RLLIB_MODEL, model)(inputs, num_outputs, options, state_in=state_in, seq_lens=seq_lens) obs_rank = len(inputs.shape) - 1 if obs_rank > 1: return VisionNetwork(inputs, num_outputs, options) return FullyConnectedNetwork(inputs, num_outputs, options)
def get_model(inputs, num_outputs): """Returns a suitable model conforming to given input and output specs. Args: inputs (Tensor): The input tensor to the model. num_outputs (int): The size of the output vector of the model. Returns: model (Model): Neural network model. """ obs_rank = len(inputs.get_shape()) - 1 if obs_rank > 1: return VisionNetwork(inputs, num_outputs) return FullyConnectedNetwork(inputs, num_outputs)
def _get_model(input_dict, obs_space, num_outputs, options, state_in, seq_lens): if options.get("custom_model"): model = options["custom_model"] logger.debug("Using custom model {}".format(model)) return _global_registry.get(RLLIB_MODEL, model)(input_dict, obs_space, num_outputs, options, state_in=state_in, seq_lens=seq_lens) obs_rank = len(input_dict["obs"].shape) - 1 if obs_rank > 1: return VisionNetwork(input_dict, obs_space, num_outputs, options) return FullyConnectedNetwork(input_dict, obs_space, num_outputs, options)
def _get_model(inputs, num_outputs, options): if "custom_model" in options: model = options["custom_model"] print("Using custom model {}".format(model)) return _global_registry.get(RLLIB_MODEL, model)(inputs, num_outputs, options) obs_rank = len(inputs.shape) - 1 # num_outputs > 1 used to avoid hitting this with the value function if isinstance( options.get("custom_options", {}).get( "multiagent_fcnet_hiddens", 1), list) and num_outputs > 1: return MultiAgentFullyConnectedNetwork(inputs, num_outputs, options) if obs_rank > 1: return VisionNetwork(inputs, num_outputs, options) return FullyConnectedNetwork(inputs, num_outputs, options)
def get_model(inputs, num_outputs, options=None): """Returns a suitable model conforming to given input and output specs. Args: inputs (Tensor): The input tensor to the model. num_outputs (int): The size of the output vector of the model. options (dict): Optional args to pass to the model constructor. Returns: model (Model): Neural network model. """ if options is None: options = {} obs_rank = len(inputs.get_shape()) - 1 if obs_rank > 1: return VisionNetwork(inputs, num_outputs, options) return FullyConnectedNetwork(inputs, num_outputs, options)