def __init__(
        self,
        *,
        train_loop_per_worker: Union[Callable[[], None], Callable[[Dict], None]],
        train_loop_config: Optional[Dict] = None,
        tensorflow_config: Optional[TensorflowConfig] = None,
        scaling_config: Optional[ScalingConfig] = None,
        run_config: Optional[RunConfig] = None,
        datasets: Optional[Dict[str, GenDataset]] = None,
        preprocessor: Optional[Preprocessor] = None,
        resume_from_checkpoint: Optional[Checkpoint] = None,
    ):
        if not tensorflow_config:
            tensorflow_config = TensorflowConfig()

        super(TensorflowTrainer, self).__init__(
            train_loop_per_worker=train_loop_per_worker,
            train_loop_config=train_loop_config,
            backend_config=tensorflow_config,
            scaling_config=scaling_config,
            run_config=run_config,
            datasets=datasets,
            preprocessor=preprocessor,
            resume_from_checkpoint=resume_from_checkpoint,
        )
Exemple #2
0
def test_worker_kill(ray_start_2_cpus, backend):
    if backend == "test":
        test_config = TestConfig()
    elif backend == "torch":
        test_config = TorchConfig()
    elif backend == "tf":
        test_config = TensorflowConfig()
    elif backend == "horovod":
        test_config = HorovodConfig()

    trainer = Trainer(test_config, num_workers=2)

    def train_func():
        for i in range(2):
            train.report(loss=1, iter=i)

    trainer.start()
    kill_callback = KillCallback(fail_on=0, trainer=trainer)
    trainer.run(train_func, callbacks=[kill_callback])
    # Run 1: iter=0, counter=1, Successful
    # Run 2: iter=1, counter=1, Unsuccessful, starts training from beginning
    # Run 3: iter=0, counter=2, Successful
    # Run 4: iter=1, counter=3, Successful
    assert kill_callback.counter == 3

    trainer.shutdown()
    trainer.start()

    kill_callback = KillCallback(fail_on=1, trainer=trainer)
    trainer.run(train_func, callbacks=[kill_callback])
    # Run 1: iter=0, counter=1, Successful
    # Run 2: iter=1, counter=2, Successful
    # Run 3: None, counter=2, Unsuccessful, starts training from beginning.
    # Run 4: iter=0, counter=3, Successful
    # Run 5: iter=1, counter=4, Successful
    assert kill_callback.counter == 4

    def train_func():
        return 1

    # Make sure Trainer is usable even after failure handling.
    trainer.run(train_func)
Exemple #3
0
def test_tensorflow_start(ray_start_2_cpus):
    num_workers = 2
    tensorflow_config = TensorflowConfig()
    e = BackendExecutor(tensorflow_config, num_workers=num_workers)
    e.start()

    def get_tf_config():
        import json
        import os
        return json.loads(os.environ["TF_CONFIG"])

    e.start_training(get_tf_config)
    results = e.finish_training()
    assert len(results) == num_workers

    workers = [result["cluster"]["worker"] for result in results]
    assert all(worker == workers[0] for worker in workers)

    indexes = [result["task"]["index"] for result in results]
    assert len(set(indexes)) == num_workers