Exemple #1
0
def test_cluster_rllib_restore(start_connected_cluster, tmpdir):
    cluster = start_connected_cluster
    dirpath = str(tmpdir)
    script = """
import time
import ray
from ray import tune

ray.init(redis_address="{redis_address}")

kwargs = dict(
    run="PG",
    env="CartPole-v1",
    stop=dict(training_iteration=10),
    local_dir="{checkpoint_dir}",
    checkpoint_freq=1,
    max_failures=1)

tune.run_experiments(
    dict(experiment=kwargs),
    raise_on_failed_trial=False)
""".format(
        redis_address=cluster.redis_address, checkpoint_dir=dirpath)
    run_string_as_driver_nonblocking(script)
    # Wait until the right checkpoint is saved.
    # The trainable returns every 0.5 seconds, so this should not miss
    # the checkpoint.
    metadata_checkpoint_dir = os.path.join(dirpath, "experiment")
    for i in range(100):
        if TrialRunner.checkpoint_exists(metadata_checkpoint_dir):
            # Inspect the internal trialrunner
            runner = TrialRunner.restore(metadata_checkpoint_dir)
            trials = runner.get_trials()
            last_res = trials[0].last_result
            if last_res and last_res.get("training_iteration"):
                break
        time.sleep(0.3)

    if not TrialRunner.checkpoint_exists(metadata_checkpoint_dir):
        raise RuntimeError("Checkpoint file didn't appear.")

    ray.shutdown()
    cluster.shutdown()
    cluster = _start_new_cluster()
    cluster.wait_for_nodes()

    # Restore properly from checkpoint
    trials2 = tune.run_experiments(
        {
            "experiment": {
                "run": "PG",
                "checkpoint_freq": 1,
                "local_dir": dirpath
            }
        },
        resume=True)
    assert all(t.status == Trial.TERMINATED for t in trials2)
    cluster.shutdown()
Exemple #2
0
def test_remove_node_before_result(start_connected_emptyhead_cluster):
    """Tune continues when node is removed before trial returns."""
    cluster = start_connected_emptyhead_cluster
    node = cluster.add_node(num_cpus=1)
    cluster.wait_for_nodes()

    runner = TrialRunner(BasicVariantGenerator())
    kwargs = {
        "stopping_criterion": {
            "training_iteration": 3
        },
        "checkpoint_freq": 2,
        "max_failures": 2
    }
    trial = Trial("__fake", **kwargs)
    runner.add_trial(trial)

    runner.step()  # run 1
    assert trial.status == Trial.RUNNING
    cluster.remove_node(node)
    cluster.add_node(num_cpus=1)
    cluster.wait_for_nodes()
    assert ray.global_state.cluster_resources()["CPU"] == 1

    for i in range(3):
        runner.step()
    assert trial.status == Trial.TERMINATED

    with pytest.raises(TuneError):
        runner.step()
Exemple #3
0
def test_trial_requeue(start_connected_emptyhead_cluster):
    """Removing a node in full cluster causes Trial to be requeued."""
    cluster = start_connected_emptyhead_cluster
    node = cluster.add_node(num_cpus=1)
    cluster.wait_for_nodes()

    runner = TrialRunner(BasicVariantGenerator())
    kwargs = {
        "stopping_criterion": {
            "training_iteration": 5
        },
        "checkpoint_freq": 1,
        "max_failures": 1
    }

    trials = [Trial("__fake", **kwargs), Trial("__fake", **kwargs)]
    for t in trials:
        runner.add_trial(t)

    runner.step()  # start
    runner.step()  # 1 result

    cluster.remove_node(node)
    cluster.wait_for_nodes()
    runner.step()
    assert all(t.status == Trial.PENDING for t in trials)

    with pytest.raises(TuneError):
        runner.step()
Exemple #4
0
def try_restore_runner(checkpoint_dir, search_alg, scheduler, trial_executor):
    new_runner = None
    try:
        new_runner = TrialRunner.restore(checkpoint_dir, search_alg, scheduler,
                                         trial_executor)
    except Exception:
        logger.exception("Runner restore failed. Restarting experiment.")
    return new_runner
Exemple #5
0
def test_counting_resources(start_connected_cluster):
    """Tests that Tune accounting is consistent with actual cluster."""
    cluster = start_connected_cluster
    nodes = []
    assert ray.global_state.cluster_resources()["CPU"] == 1
    runner = TrialRunner(BasicVariantGenerator())
    kwargs = {"stopping_criterion": {"training_iteration": 10}}

    trials = [Trial("__fake", **kwargs), Trial("__fake", **kwargs)]
    for t in trials:
        runner.add_trial(t)

    runner.step()  # run 1
    nodes += [cluster.add_node(num_cpus=1)]
    cluster.wait_for_nodes()
    assert ray.global_state.cluster_resources()["CPU"] == 2
    cluster.remove_node(nodes.pop())
    cluster.wait_for_nodes()
    assert ray.global_state.cluster_resources()["CPU"] == 1
    runner.step()  # run 2
    assert sum(t.status == Trial.RUNNING for t in runner.get_trials()) == 1

    for i in range(5):
        nodes += [cluster.add_node(num_cpus=1)]
    cluster.wait_for_nodes()
    assert ray.global_state.cluster_resources()["CPU"] == 6

    runner.step()  # 1 result
    assert sum(t.status == Trial.RUNNING for t in runner.get_trials()) == 2
Exemple #6
0
    def testCheckpointOverwrite(self):
        def count_checkpoints(cdir):
            return sum(
                (fname.startswith("experiment_state") and fname.endswith(".json"))
                for fname in os.listdir(cdir)
            )

        ray.init(num_cpus=2)

        trial = Trial("__fake", checkpoint_freq=1)
        tmpdir = tempfile.mkdtemp()
        runner = TrialRunner(local_checkpoint_dir=tmpdir, checkpoint_period=0)
        runner.add_trial(trial)
        for _ in range(5):
            runner.step()
        # force checkpoint
        runner.checkpoint()
        self.assertEqual(count_checkpoints(tmpdir), 1)

        runner2 = TrialRunner(resume="LOCAL", local_checkpoint_dir=tmpdir)
        for _ in range(5):
            runner2.step()
        self.assertEqual(count_checkpoints(tmpdir), 2)

        runner2.checkpoint()
        self.assertEqual(count_checkpoints(tmpdir), 2)
        shutil.rmtree(tmpdir)
Exemple #7
0
 def testThrowOnOverstep(self):
     ray.init(num_cpus=1, num_gpus=1)
     runner = TrialRunner()
     runner.step()
     self.assertRaises(TuneError, runner.step)
Exemple #8
0
    def testRestoreMetricsAfterCheckpointing(self):
        ray.init(num_cpus=1, num_gpus=1)

        observer = TrialResultObserver()
        runner = TrialRunner(callbacks=[observer])
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 2
            },
            "resources": Resources(cpu=1, gpu=1),
            "checkpoint_freq": 1,
        }
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        while not runner.is_finished():
            runner.step()

        self.assertEqual(trials[0].status, Trial.TERMINATED)

        kwargs["restore_path"] = trials[0].checkpoint.value
        kwargs.pop("stopping_criterion")
        kwargs.pop("checkpoint_freq")  # No checkpointing for next trial
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        observer.reset()
        while not observer.just_received_a_result():
            runner.step()
        self.assertEqual(trials[1].last_result["timesteps_since_restore"], 10)
        self.assertEqual(trials[1].last_result["iterations_since_restore"], 1)
        self.assertGreater(trials[1].last_result["time_since_restore"], 0)

        while not observer.just_received_a_result():
            runner.step()

        self.assertEqual(trials[1].last_result["timesteps_since_restore"], 20)
        self.assertEqual(trials[1].last_result["iterations_since_restore"], 2)
        self.assertGreater(trials[1].last_result["time_since_restore"], 0)
        self.addCleanup(os.remove, trials[0].checkpoint.value)
Exemple #9
0
    def testFailureRecoveryDisabled(self):
        ray.init(num_cpus=1, num_gpus=1)
        runner = TrialRunner(BasicVariantGenerator())
        kwargs = {
            "resources": Resources(cpu=1, gpu=1),
            "checkpoint_freq": 1,
            "max_failures": 0,
            "config": {
                "mock_error": True,
            },
        }
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        runner.step()
        self.assertEqual(trials[0].status, Trial.ERROR)
        self.assertEqual(trials[0].num_failures, 1)
Exemple #10
0
    def testSearchAlgStalled(self):
        """Checks that runner and searcher state is maintained when stalled."""
        ray.init(num_cpus=4, num_gpus=2)
        experiment_spec = {
            "run": "__fake",
            "num_samples": 3,
            "stop": {
                "training_iteration": 1
            }
        }
        experiments = [Experiment.from_json("test", experiment_spec)]
        searcher = _MockSuggestionAlgorithm(max_concurrent=1)
        searcher.add_configurations(experiments)
        runner = TrialRunner(search_alg=searcher)
        runner.step()
        trials = runner.get_trials()
        self.assertEqual(trials[0].status, Trial.RUNNING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)

        trials = runner.get_trials()
        runner.step()
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(len(searcher.live_trials), 1)

        searcher.stall = True

        runner.step()
        self.assertEqual(trials[1].status, Trial.TERMINATED)
        self.assertEqual(len(searcher.live_trials), 0)

        self.assertTrue(all(trial.is_finished() for trial in trials))
        self.assertFalse(searcher.is_finished())
        self.assertFalse(runner.is_finished())

        searcher.stall = False

        runner.step()
        trials = runner.get_trials()
        self.assertEqual(trials[2].status, Trial.RUNNING)
        self.assertEqual(len(searcher.live_trials), 1)

        runner.step()
        self.assertEqual(trials[2].status, Trial.TERMINATED)
        self.assertEqual(len(searcher.live_trials), 0)
        self.assertTrue(searcher.is_finished())
        self.assertTrue(runner.is_finished())
Exemple #11
0
    def testPauseThenResume(self):
        ray.init(num_cpus=1, num_gpus=1)
        runner = TrialRunner(BasicVariantGenerator())
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 2
            },
            "resources": Resources(cpu=1, gpu=1),
        }
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[0].runner.get_info.remote()), None)

        self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)

        runner.trial_executor.pause_trial(trials[0])
        self.assertEqual(trials[0].status, Trial.PAUSED)

        runner.trial_executor.resume_trial(trials[0])
        self.assertEqual(trials[0].status, Trial.RUNNING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[0].runner.get_info.remote()), 1)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
 def setUp(self):
     self.tmpdir = tempfile.mkdtemp()
     self.callback = TestCallback()
     self.executor = _MockTrialExecutor()
     self.trial_runner = TrialRunner(
         trial_executor=self.executor, callbacks=[self.callback])
class TrialRunnerCallbacks(unittest.TestCase):
    def setUp(self):
        self.tmpdir = tempfile.mkdtemp()
        self.callback = TestCallback()
        self.executor = _MockTrialExecutor()
        self.trial_runner = TrialRunner(
            trial_executor=self.executor, callbacks=[self.callback])

    def tearDown(self):
        ray.shutdown()
        _register_all()  # re-register the evicted objects
        if "CUDA_VISIBLE_DEVICES" in os.environ:
            del os.environ["CUDA_VISIBLE_DEVICES"]
        shutil.rmtree(self.tmpdir)

    def testCallbackSteps(self):
        trials = [
            Trial("__fake", trial_id="one"),
            Trial("__fake", trial_id="two")
        ]
        for t in trials:
            self.trial_runner.add_trial(t)

        self.executor.next_trial = trials[0]
        self.trial_runner.step()

        # Trial 1 has been started
        self.assertEqual(self.callback.state["trial_start"]["iteration"], 0)
        self.assertEqual(self.callback.state["trial_start"]["trial"].trial_id,
                         "one")

        # All these events haven't happened, yet
        self.assertTrue(
            all(k not in self.callback.state for k in [
                "trial_restore", "trial_save", "trial_result",
                "trial_complete", "trial_fail"
            ]))

        self.executor.next_trial = trials[1]
        self.trial_runner.step()

        # Iteration not increased yet
        self.assertEqual(self.callback.state["step_begin"]["iteration"], 1)

        # Iteration increased
        self.assertEqual(self.callback.state["step_end"]["iteration"], 2)

        # Second trial has been just started
        self.assertEqual(self.callback.state["trial_start"]["iteration"], 1)
        self.assertEqual(self.callback.state["trial_start"]["trial"].trial_id,
                         "two")

        cp = Checkpoint(Checkpoint.PERSISTENT, "__checkpoint",
                        {TRAINING_ITERATION: 0})

        # Let the first trial save a checkpoint
        self.executor.next_trial = trials[0]
        trials[0].saving_to = cp
        self.trial_runner.step()
        self.assertEqual(self.callback.state["trial_save"]["iteration"], 2)
        self.assertEqual(self.callback.state["trial_save"]["trial"].trial_id,
                         "one")

        # Let the second trial send a result
        result = {TRAINING_ITERATION: 1, "metric": 800, "done": False}
        self.executor.results[trials[1]] = result
        self.executor.next_trial = trials[1]
        self.assertEqual(trials[1].last_result, {})
        self.trial_runner.step()
        self.assertEqual(self.callback.state["trial_result"]["iteration"], 3)
        self.assertEqual(self.callback.state["trial_result"]["trial"].trial_id,
                         "two")
        self.assertEqual(
            self.callback.state["trial_result"]["result"]["metric"], 800)
        self.assertEqual(trials[1].last_result["metric"], 800)

        # Let the second trial restore from a checkpoint
        trials[1].restoring_from = cp
        self.executor.results[trials[1]] = trials[1].last_result
        self.trial_runner.step()
        self.assertEqual(self.callback.state["trial_restore"]["iteration"], 4)
        self.assertEqual(
            self.callback.state["trial_restore"]["trial"].trial_id, "two")

        # Let the second trial finish
        trials[1].restoring_from = None
        self.executor.results[trials[1]] = {
            TRAINING_ITERATION: 2,
            "metric": 900,
            "done": True
        }
        self.trial_runner.step()
        self.assertEqual(self.callback.state["trial_complete"]["iteration"], 5)
        self.assertEqual(
            self.callback.state["trial_complete"]["trial"].trial_id, "two")

        # Let the first trial error
        self.executor.failed_trial = trials[0]
        self.trial_runner.step()
        self.assertEqual(self.callback.state["trial_fail"]["iteration"], 6)
        self.assertEqual(self.callback.state["trial_fail"]["trial"].trial_id,
                         "one")

    def testCallbacksEndToEnd(self):
        def train(config):
            if config["do"] == "save":
                with tune.checkpoint_dir(0):
                    pass
                tune.report(metric=1)
            elif config["do"] == "fail":
                raise RuntimeError("I am failing on purpose.")
            elif config["do"] == "delay":
                time.sleep(2)
                tune.report(metric=20)

        config = {"do": tune.grid_search(["save", "fail", "delay"])}

        tune.run(
            train,
            config=config,
            raise_on_failed_trial=False,
            callbacks=[self.callback])

        self.assertEqual(
            self.callback.state["trial_fail"]["trial"].config["do"], "fail")
        self.assertEqual(
            self.callback.state["trial_save"]["trial"].config["do"], "save")
        self.assertEqual(
            self.callback.state["trial_result"]["trial"].config["do"], "delay")
        self.assertEqual(
            self.callback.state["trial_complete"]["trial"].config["do"],
            "delay")
Exemple #14
0
    def testStopTrial(self):
        ray.init(num_cpus=4, num_gpus=2)
        runner = TrialRunner()
        kwargs = {
            "stopping_criterion": {"training_iteration": 5},
            "resources": Resources(cpu=1, gpu=1),
        }
        trials = [
            Trial("__fake", **kwargs),
            Trial("__fake", **kwargs),
            Trial("__fake", **kwargs),
            Trial("__fake", **kwargs),
        ]
        for t in trials:
            runner.add_trial(t)
        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(trials[1].status, Trial.PENDING)

        # Stop trial while running
        runner.stop_trial(trials[0])
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.PENDING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(trials[-1].status, Trial.PENDING)

        # Stop trial while pending
        runner.stop_trial(trials[-1])
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(trials[-1].status, Trial.TERMINATED)

        time.sleep(2)  # Wait for stopped placement group to free resources
        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(trials[2].status, Trial.RUNNING)
        self.assertEqual(trials[-1].status, Trial.TERMINATED)
Exemple #15
0
    def testUserCheckpointBuffered(self):
        os.environ["TUNE_RESULT_BUFFER_LENGTH"] = "8"
        os.environ["TUNE_RESULT_BUFFER_MIN_TIME_S"] = "1"

        def num_checkpoints(trial):
            return sum(
                item.startswith("checkpoint_") for item in os.listdir(trial.logdir)
            )

        ray.init(num_cpus=3)
        runner = TrialRunner(local_checkpoint_dir=self.tmpdir, checkpoint_period=0)
        runner.add_trial(Trial("__fake", config={"user_checkpoint_freq": 10}))
        trials = runner.get_trials()

        runner.step()  # Start trial, schedule 1-8
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)
        self.assertEqual(num_checkpoints(trials[0]), 0)

        runner.step()  # Process results 0-8, schedule 9-11 (CP)
        self.assertEqual(trials[0].last_result.get(TRAINING_ITERATION), 8)
        self.assertFalse(trials[0].has_checkpoint())
        self.assertEqual(num_checkpoints(trials[0]), 0)

        runner.step()  # Process results 9-11
        runner.step()  # handle CP, schedule 12-19
        self.assertEqual(trials[0].last_result.get(TRAINING_ITERATION), 11)
        self.assertTrue(trials[0].has_checkpoint())
        self.assertEqual(num_checkpoints(trials[0]), 1)

        runner.step()  # Process results 12-19, schedule 20-21
        self.assertEqual(trials[0].last_result.get(TRAINING_ITERATION), 19)
        self.assertTrue(trials[0].has_checkpoint())
        self.assertEqual(num_checkpoints(trials[0]), 1)

        runner.step()  # Process results 20-21
        runner.step()  # handle CP, schedule 21-29
        self.assertEqual(trials[0].last_result.get(TRAINING_ITERATION), 21)
        self.assertTrue(trials[0].has_checkpoint())
        self.assertEqual(num_checkpoints(trials[0]), 2)

        runner.step()  # Process results 21-29, schedule 30-31
        self.assertEqual(trials[0].last_result.get(TRAINING_ITERATION), 29)
        self.assertTrue(trials[0].has_checkpoint())
        self.assertTrue(trials[0].has_checkpoint())
        self.assertEqual(num_checkpoints(trials[0]), 2)
Exemple #16
0
    def testUserCheckpoint(self):
        os.environ["TUNE_RESULT_BUFFER_LENGTH"] = "1"  # Don't finish early
        os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "1"

        ray.init(num_cpus=3)
        runner = TrialRunner(local_checkpoint_dir=self.tmpdir, checkpoint_period=0)
        runner.add_trial(Trial("__fake", config={"user_checkpoint_freq": 2}))
        trials = runner.get_trials()

        runner.step()  # Start trial
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)
        runner.step()  # Process result
        self.assertFalse(trials[0].has_checkpoint())
        runner.step()  # Process result
        self.assertFalse(trials[0].has_checkpoint())
        runner.step()  # Process result, dispatch save
        runner.step()  # Process save
        self.assertTrue(trials[0].has_checkpoint())

        runner2 = TrialRunner(resume="LOCAL", local_checkpoint_dir=self.tmpdir)
        runner2.step()  # 5: Start trial and dispatch restore
        trials2 = runner2.get_trials()
        self.assertEqual(ray.get(trials2[0].runner.get_info.remote()), 1)
Exemple #17
0
    def testCheckpointAtEndNotBuffered(self):
        os.environ["TUNE_RESULT_BUFFER_LENGTH"] = "7"
        os.environ["TUNE_RESULT_BUFFER_MIN_TIME_S"] = "0.5"

        def num_checkpoints(trial):
            return sum(
                item.startswith("checkpoint_") for item in os.listdir(trial.logdir)
            )

        ray.init(num_cpus=2)

        trial = Trial(
            "__fake",
            checkpoint_at_end=True,
            stopping_criterion={"training_iteration": 4},
        )
        runner = TrialRunner(
            local_checkpoint_dir=self.tmpdir,
            checkpoint_period=0,
            trial_executor=RayTrialExecutor(result_buffer_length=7),
        )
        runner.add_trial(trial)

        runner.step()  # start trial

        runner.step()  # run iteration 1
        self.assertEqual(trial.last_result[TRAINING_ITERATION], 1)
        self.assertEqual(num_checkpoints(trial), 0)

        runner.step()  # run iteration 2
        self.assertEqual(trial.last_result[TRAINING_ITERATION], 2)
        self.assertEqual(num_checkpoints(trial), 0)

        runner.step()  # run iteration 3
        self.assertEqual(trial.last_result[TRAINING_ITERATION], 3)
        self.assertEqual(num_checkpoints(trial), 0)

        runner.step()  # run iteration 4
        self.assertEqual(trial.last_result[TRAINING_ITERATION], 4)
        self.assertEqual(num_checkpoints(trial), 1)
Exemple #18
0
    def testCheckpointFreqBuffered(self):
        os.environ["TUNE_RESULT_BUFFER_LENGTH"] = "7"
        os.environ["TUNE_RESULT_BUFFER_MIN_TIME_S"] = "1"

        def num_checkpoints(trial):
            return sum(
                item.startswith("checkpoint_") for item in os.listdir(trial.logdir)
            )

        ray.init(num_cpus=2)

        trial = Trial("__fake", checkpoint_freq=3)
        runner = TrialRunner(local_checkpoint_dir=self.tmpdir, checkpoint_period=0)
        runner.add_trial(trial)

        runner.step()  # start trial
        runner.step()  # run iteration 1-3
        runner.step()  # process save
        self.assertEqual(trial.last_result[TRAINING_ITERATION], 3)
        self.assertEqual(num_checkpoints(trial), 1)

        runner.step()  # run iteration 4-6
        runner.step()  # process save
        self.assertEqual(trial.last_result[TRAINING_ITERATION], 6)
        self.assertEqual(num_checkpoints(trial), 2)

        runner.step()  # run iteration 7-9
        runner.step()  # process save
        self.assertEqual(trial.last_result[TRAINING_ITERATION], 9)
        self.assertEqual(num_checkpoints(trial), 3)
Exemple #19
0
def test_cluster_interrupt_searcher(start_connected_cluster, tmpdir, searcher):
    """Tests restoration of HyperOptSearch experiment on cluster shutdown
    with actual interrupt.

    Restoration should restore both state of trials
    and previous search algorithm (HyperOptSearch) state.
    This is an end-to-end test.
    """
    cluster = start_connected_cluster
    dirpath = str(tmpdir)
    local_checkpoint_dir = os.path.join(dirpath, "experiment")
    from ray.tune import register_trainable

    register_trainable("trainable", MyTrainableClass)

    def execute_script_with_args(*args):
        current_dir = os.path.dirname(__file__)
        script = os.path.join(current_dir,
                              "_test_cluster_interrupt_searcher.py")
        subprocess.Popen([sys.executable, script] + list(args))

    args = (
        "--ray-address",
        cluster.address,
        "--local-dir",
        dirpath,
        "--searcher",
        searcher,
    )
    execute_script_with_args(*args)
    # Wait until the right checkpoint is saved.
    # The trainable returns every 0.5 seconds, so this should not miss
    # the checkpoint.
    trials = []
    for i in range(100):
        if TrialRunner.checkpoint_exists(local_checkpoint_dir):
            # Inspect the internal trialrunner
            runner = TrialRunner(resume="LOCAL",
                                 local_checkpoint_dir=local_checkpoint_dir)
            trials = runner.get_trials()
            if trials and len(trials) >= 10:
                break
        time.sleep(0.5)
    else:
        raise ValueError(f"Didn't generate enough trials: {len(trials)}")

    if not TrialRunner.checkpoint_exists(local_checkpoint_dir):
        raise RuntimeError(
            f"Checkpoint file didn't appear in {local_checkpoint_dir}. "
            f"Current list: {os.listdir(local_checkpoint_dir)}.")

    ray.shutdown()
    cluster.shutdown()

    cluster = _start_new_cluster()
    execute_script_with_args(*(args + ("--resume", )))

    time.sleep(2)

    register_trainable("trainable", MyTrainableClass)
    reached = False
    for i in range(100):
        if TrialRunner.checkpoint_exists(local_checkpoint_dir):
            # Inspect the internal trialrunner
            runner = TrialRunner(resume="LOCAL",
                                 local_checkpoint_dir=local_checkpoint_dir)
            trials = runner.get_trials()

            if len(trials) == 0:
                continue  # nonblocking script hasn't resumed yet, wait

            reached = True
            assert len(trials) >= 10
            assert len(trials) <= 20
            if len(trials) == 20:
                break
            else:
                stop_fn = runner.trial_executor.stop_trial
                [stop_fn(t) for t in trials if t.status is not Trial.ERROR]
        time.sleep(0.5)
    assert reached is True

    ray.shutdown()
    cluster.shutdown()
Exemple #20
0
    def testTrialSaveRestore(self):
        """Creates different trials to test runner.checkpoint/restore."""
        ray.init(num_cpus=3)

        runner = TrialRunner(local_checkpoint_dir=self.tmpdir, checkpoint_period=0)
        trials = [
            Trial(
                "__fake",
                trial_id="trial_terminate",
                stopping_criterion={"training_iteration": 1},
                checkpoint_freq=1,
            )
        ]
        runner.add_trial(trials[0])
        runner.step()  # Start trial
        runner.step()  # Process result, dispatch save
        runner.step()  # Process save
        self.assertEqual(trials[0].status, Trial.TERMINATED)

        trials += [
            Trial(
                "__fake",
                trial_id="trial_fail",
                stopping_criterion={"training_iteration": 3},
                checkpoint_freq=1,
                config={"mock_error": True},
            )
        ]
        runner.add_trial(trials[1])
        runner.step()  # Start trial
        runner.step()  # Process result, dispatch save
        runner.step()  # Process save
        runner.step()  # Error
        self.assertEqual(trials[1].status, Trial.ERROR)

        trials += [
            Trial(
                "__fake",
                trial_id="trial_succ",
                stopping_criterion={"training_iteration": 2},
                checkpoint_freq=1,
            )
        ]
        runner.add_trial(trials[2])
        runner.step()  # Start trial
        self.assertEqual(len(runner.trial_executor.get_checkpoints()), 3)
        self.assertEqual(trials[2].status, Trial.RUNNING)

        runner2 = TrialRunner(resume="LOCAL", local_checkpoint_dir=self.tmpdir)
        for tid in ["trial_terminate", "trial_fail"]:
            original_trial = runner.get_trial(tid)
            restored_trial = runner2.get_trial(tid)
            self.assertEqual(original_trial.status, restored_trial.status)

        restored_trial = runner2.get_trial("trial_succ")
        self.assertEqual(Trial.PENDING, restored_trial.status)

        runner2.step()  # Start trial
        runner2.step()  # Process result, dispatch save
        runner2.step()  # Process save
        runner2.step()  # Process result, dispatch save
        runner2.step()  # Process save
        self.assertRaises(TuneError, runner2.step)
Exemple #21
0
    def testBurnInPeriod(self):
        runner = TrialRunner(trial_executor=MagicMock())

        scheduler = PopulationBasedTraining(
            time_attr="training_iteration",
            metric="error",
            mode="min",
            perturbation_interval=5,
            burn_in_period=50,
            log_config=True,
            synch=True,
        )

        class MockTrial(Trial):
            @property
            def checkpoint(self):
                return _TuneCheckpoint(_TuneCheckpoint.MEMORY, "None", {})

            @property
            def status(self):
                return Trial.PAUSED

            @status.setter
            def status(self, status):
                pass

        trial1 = MockTrial("PPO", config=dict(num=1))
        trial2 = MockTrial("PPO", config=dict(num=2))
        trial3 = MockTrial("PPO", config=dict(num=3))
        trial4 = MockTrial("PPO", config=dict(num=4))

        runner.add_trial(trial1)
        runner.add_trial(trial2)
        runner.add_trial(trial3)
        runner.add_trial(trial4)

        scheduler.on_trial_add(runner, trial1)
        scheduler.on_trial_add(runner, trial2)
        scheduler.on_trial_add(runner, trial3)
        scheduler.on_trial_add(runner, trial4)

        # Add initial results.
        scheduler.on_trial_result(runner,
                                  trial1,
                                  result=dict(training_iteration=1, error=50))
        scheduler.on_trial_result(runner,
                                  trial2,
                                  result=dict(training_iteration=1, error=50))
        scheduler.on_trial_result(runner,
                                  trial3,
                                  result=dict(training_iteration=1, error=10))
        scheduler.on_trial_result(runner,
                                  trial4,
                                  result=dict(training_iteration=1, error=100))

        # Add more results. Without burn-in, this would now exploit
        scheduler.on_trial_result(runner,
                                  trial1,
                                  result=dict(training_iteration=30, error=50))
        scheduler.on_trial_result(runner,
                                  trial2,
                                  result=dict(training_iteration=30, error=50))
        scheduler.on_trial_result(runner,
                                  trial3,
                                  result=dict(training_iteration=30, error=10))
        scheduler.on_trial_result(runner,
                                  trial4,
                                  result=dict(training_iteration=30,
                                              error=100))

        self.assertEqual(trial4.config["num"], 4)

        # Add more results. Since this is after burn-in, it should now exploit
        scheduler.on_trial_result(runner,
                                  trial1,
                                  result=dict(training_iteration=50, error=50))
        scheduler.on_trial_result(runner,
                                  trial2,
                                  result=dict(training_iteration=50, error=50))
        scheduler.on_trial_result(runner,
                                  trial3,
                                  result=dict(training_iteration=50, error=10))
        scheduler.on_trial_result(runner,
                                  trial4,
                                  result=dict(training_iteration=50,
                                              error=100))

        self.assertEqual(trial4.config["num"], 3)

        # Assert that trials do not hang after `burn_in_period`
        self.assertTrue(all(t.status == "PAUSED" for t in runner.get_trials()))
        self.assertTrue(scheduler.choose_trial_to_run(runner))

        # Assert that trials do not hang when a terminated trial is added
        trial5 = Trial("PPO", config=dict(num=5))
        runner.add_trial(trial5)
        scheduler.on_trial_add(runner, trial5)
        trial5.set_status(Trial.TERMINATED)
        self.assertTrue(scheduler.choose_trial_to_run(runner))
Exemple #22
0
    def testStopTrial(self):
        ray.init(num_cpus=4, num_gpus=2)
        runner = TrialRunner(BasicVariantGenerator())
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 5
            },
            "resources": Resources(cpu=1, gpu=1),
        }
        trials = [
            Trial("__fake", **kwargs),
            Trial("__fake", **kwargs),
            Trial("__fake", **kwargs),
            Trial("__fake", **kwargs)
        ]
        for t in trials:
            runner.add_trial(t)
        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(trials[1].status, Trial.PENDING)

        # Stop trial while running
        runner.stop_trial(trials[0])
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.PENDING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(trials[-1].status, Trial.PENDING)

        # Stop trial while pending
        runner.stop_trial(trials[-1])
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(trials[-1].status, Trial.TERMINATED)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(trials[2].status, Trial.RUNNING)
        self.assertEqual(trials[-1].status, Trial.TERMINATED)
Exemple #23
0
def run(
    run_or_experiment: Union[str, Callable, Type],
    name: Optional[str] = None,
    metric: Optional[str] = None,
    mode: Optional[str] = None,
    stop: Union[None, Mapping, Stopper, Callable[[str, Mapping], bool]] = None,
    time_budget_s: Union[None, int, float, datetime.timedelta] = None,
    config: Optional[Dict[str, Any]] = None,
    resources_per_trial: Union[None, Mapping[str, Union[float, int, Mapping]],
                               PlacementGroupFactory] = None,
    num_samples: int = 1,
    local_dir: Optional[str] = None,
    search_alg: Optional[Union[Searcher, SearchAlgorithm, str]] = None,
    scheduler: Optional[Union[TrialScheduler, str]] = None,
    keep_checkpoints_num: Optional[int] = None,
    checkpoint_score_attr: Optional[str] = None,
    checkpoint_freq: int = 0,
    checkpoint_at_end: bool = False,
    verbose: Union[int, Verbosity] = Verbosity.V3_TRIAL_DETAILS,
    progress_reporter: Optional[ProgressReporter] = None,
    log_to_file: bool = False,
    trial_name_creator: Optional[Callable[[Trial], str]] = None,
    trial_dirname_creator: Optional[Callable[[Trial], str]] = None,
    sync_config: Optional[SyncConfig] = None,
    export_formats: Optional[Sequence] = None,
    max_failures: int = 0,
    fail_fast: bool = False,
    restore: Optional[str] = None,
    server_port: Optional[int] = None,
    resume: bool = False,
    reuse_actors: bool = False,
    trial_executor: Optional[RayTrialExecutor] = None,
    raise_on_failed_trial: bool = True,
    callbacks: Optional[Sequence[Callback]] = None,
    max_concurrent_trials: Optional[int] = None,
    # Deprecated args
    queue_trials: Optional[bool] = None,
    loggers: Optional[Sequence[Type[Logger]]] = None,
    _remote: Optional[bool] = None,
) -> ExperimentAnalysis:
    """Executes training.

    When a SIGINT signal is received (e.g. through Ctrl+C), the tuning run
    will gracefully shut down and checkpoint the latest experiment state.
    Sending SIGINT again (or SIGKILL/SIGTERM instead) will skip this step.

    Many aspects of Tune, such as the frequency of global checkpointing,
    maximum pending placement group trials and the path of the result
    directory be configured through environment variables. Refer to
    :ref:`tune-env-vars` for a list of environment variables available.

    Examples:

    .. code-block:: python

        # Run 10 trials (each trial is one instance of a Trainable). Tune runs
        # in parallel and automatically determines concurrency.
        tune.run(trainable, num_samples=10)

        # Run 1 trial, stop when trial has reached 10 iterations
        tune.run(my_trainable, stop={"training_iteration": 10})

        # automatically retry failed trials up to 3 times
        tune.run(my_trainable, stop={"training_iteration": 10}, max_failures=3)

        # Run 1 trial, search over hyperparameters, stop after 10 iterations.
        space = {"lr": tune.uniform(0, 1), "momentum": tune.uniform(0, 1)}
        tune.run(my_trainable, config=space, stop={"training_iteration": 10})

        # Resumes training if a previous machine crashed
        tune.run(my_trainable, config=space,
                 local_dir=<path/to/dir>, resume=True)

        # Rerun ONLY failed trials after an experiment is finished.
        tune.run(my_trainable, config=space,
                 local_dir=<path/to/dir>, resume="ERRORED_ONLY")

    Args:
        run_or_experiment (function | class | str | :class:`Experiment`): If
            function|class|str, this is the algorithm or model to train.
            This may refer to the name of a built-on algorithm
            (e.g. RLLib's DQN or PPO), a user-defined trainable
            function or class, or the string identifier of a
            trainable function or class registered in the tune registry.
            If Experiment, then Tune will execute training based on
            Experiment.spec. If you want to pass in a Python lambda, you
            will need to first register the function:
            ``tune.register_trainable("lambda_id", lambda x: ...)``. You can
            then use ``tune.run("lambda_id")``.
        metric (str): Metric to optimize. This metric should be reported
            with `tune.report()`. If set, will be passed to the search
            algorithm and scheduler.
        mode (str): Must be one of [min, max]. Determines whether objective is
            minimizing or maximizing the metric attribute. If set, will be
            passed to the search algorithm and scheduler.
        name (str): Name of experiment.
        stop (dict | callable | :class:`Stopper`): Stopping criteria. If dict,
            the keys may be any field in the return result of 'train()',
            whichever is reached first. If function, it must take (trial_id,
            result) as arguments and return a boolean (True if trial should be
            stopped, False otherwise). This can also be a subclass of
            ``ray.tune.Stopper``, which allows users to implement
            custom experiment-wide stopping (i.e., stopping an entire Tune
            run based on some time constraint).
        time_budget_s (int|float|datetime.timedelta): Global time budget in
            seconds after which all trials are stopped. Can also be a
            ``datetime.timedelta`` object.
        config (dict): Algorithm-specific configuration for Tune variant
            generation (e.g. env, hyperparams). Defaults to empty dict.
            Custom search algorithms may ignore this.
        resources_per_trial (dict|PlacementGroupFactory): Machine resources
            to allocate per trial, e.g. ``{"cpu": 64, "gpu": 8}``.
            Note that GPUs will not be assigned unless you specify them here.
            Defaults to 1 CPU and 0 GPUs in
            ``Trainable.default_resource_request()``. This can also
            be a PlacementGroupFactory object wrapping arguments to create a
            per-trial placement group.
        num_samples (int): Number of times to sample from the
            hyperparameter space. Defaults to 1. If `grid_search` is
            provided as an argument, the grid will be repeated
            `num_samples` of times. If this is -1, (virtually) infinite
            samples are generated until a stopping condition is met.
        local_dir (str): Local dir to save training results to.
            Defaults to ``~/ray_results``.
        search_alg (Searcher|SearchAlgorithm|str): Search algorithm for
            optimization. You can also use the name of the algorithm.
        scheduler (TrialScheduler|str): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, HyperBand and PopulationBasedTraining. Refer to
            ray.tune.schedulers for more options. You can also use the
            name of the scheduler.
        keep_checkpoints_num (int): Number of checkpoints to keep. A value of
            `None` keeps all checkpoints. Defaults to `None`. If set, need
            to provide `checkpoint_score_attr`.
        checkpoint_score_attr (str): Specifies by which attribute to rank the
            best checkpoint. Default is increasing order. If attribute starts
            with `min-` it will rank attribute in decreasing order, i.e.
            `min-validation_loss`.
        checkpoint_freq (int): How many training iterations between
            checkpoints. A value of 0 (default) disables checkpointing.
            This has no effect when using the Functional Training API.
        checkpoint_at_end (bool): Whether to checkpoint at the end of the
            experiment regardless of the checkpoint_freq. Default is False.
            This has no effect when using the Functional Training API.
        verbose (Union[int, Verbosity]): 0, 1, 2, or 3. Verbosity mode.
            0 = silent, 1 = only status updates, 2 = status and brief trial
            results, 3 = status and detailed trial results. Defaults to 3.
        progress_reporter (ProgressReporter): Progress reporter for reporting
            intermediate experiment progress. Defaults to CLIReporter if
            running in command-line, or JupyterNotebookReporter if running in
            a Jupyter notebook.
        log_to_file (bool|str|Sequence): Log stdout and stderr to files in
            Tune's trial directories. If this is `False` (default), no files
            are written. If `true`, outputs are written to `trialdir/stdout`
            and `trialdir/stderr`, respectively. If this is a single string,
            this is interpreted as a file relative to the trialdir, to which
            both streams are written. If this is a Sequence (e.g. a Tuple),
            it has to have length 2 and the elements indicate the files to
            which stdout and stderr are written, respectively.
        trial_name_creator (Callable[[Trial], str]): Optional function
            for generating the trial string representation.
        trial_dirname_creator (Callable[[Trial], str]): Function
            for generating the trial dirname. This function should take
            in a Trial object and return a string representing the
            name of the directory. The return value cannot be a path.
        sync_config (SyncConfig): Configuration object for syncing. See
            tune.SyncConfig.
        export_formats (list): List of formats that exported at the end of
            the experiment. Default is None.
        max_failures (int): Try to recover a trial at least this many times.
            Ray will recover from the latest checkpoint if present.
            Setting to -1 will lead to infinite recovery retries.
            Setting to 0 will disable retries. Defaults to 0.
        fail_fast (bool | str): Whether to fail upon the first error.
            If fail_fast='raise' provided, Tune will automatically
            raise the exception received by the Trainable. fail_fast='raise'
            can easily leak resources and should be used with caution (it
            is best used with `ray.init(local_mode=True)`).
        restore (str): Path to checkpoint. Only makes sense to set if
            running 1 trial. Defaults to None.
        server_port (int): Port number for launching TuneServer.
        resume (str|bool): One of "LOCAL", "REMOTE", "PROMPT", "ERRORED_ONLY",
            or bool. LOCAL/True restores the checkpoint from the
            local experiment directory, determined
            by ``name`` and ``local_dir``. REMOTE restores the checkpoint
            from ``upload_dir`` (as passed to ``sync_config``).
            PROMPT provides CLI feedback.
            False forces a new experiment. ERRORED_ONLY resets and reruns
            ERRORED trials upon resume - previous trial artifacts will
            be left untouched.  If resume is set but checkpoint does not exist,
            ValueError will be thrown.
        reuse_actors (bool): Whether to reuse actors between different trials
            when possible. This can drastically speed up experiments that start
            and stop actors often (e.g., PBT in time-multiplexing mode). This
            requires trials to have the same resource requirements.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.
        callbacks (list): List of callbacks that will be called at different
            times in the training loop. Must be instances of the
            ``ray.tune.callback.Callback`` class. If not passed,
            `LoggerCallback` and `SyncerCallback` callbacks are automatically
            added.
        max_concurrent_trials (int): Maximum number of trials to run
            concurrently. Must be non-negative. If None or 0, no limit will
            be applied. This is achieved by wrapping the ``search_alg`` in
            a :class:`ConcurrencyLimiter`, and thus setting this argument
            will raise an exception if the ``search_alg`` is already a
            :class:`ConcurrencyLimiter`. Defaults to None.
        _remote (bool): Whether to run the Tune driver in a remote function.
            This is disabled automatically if a custom trial executor is
            passed in. This is enabled by default in Ray client mode.

    Returns:
        ExperimentAnalysis: Object for experiment analysis.

    Raises:
        TuneError: Any trials failed and `raise_on_failed_trial` is True.
    """

    # To be removed in 1.9.
    if queue_trials is not None:
        raise DeprecationWarning(
            "`queue_trials` has been deprecated and is replaced by "
            "the `TUNE_MAX_PENDING_TRIALS_PG` environment variable. "
            "Per default at least one Trial is queued at all times, "
            "so you likely don't need to change anything other than "
            "removing this argument from your call to `tune.run()`")

    # NO CODE IS TO BE ADDED ABOVE THIS COMMENT
    # remote_run_kwargs must be defined before any other
    # code is ran to ensure that at this point,
    # `locals()` is equal to args and kwargs
    remote_run_kwargs = locals().copy()
    remote_run_kwargs.pop("_remote")

    if _remote is None:
        _remote = ray.util.client.ray.is_connected()

    if _remote is True and trial_executor:
        raise ValueError("cannot use custom trial executor")

    if not trial_executor or isinstance(trial_executor, RayTrialExecutor):
        _ray_auto_init()

    if _remote:
        remote_run = ray.remote(num_cpus=0)(run)

        # Make sure tune.run is called on the sever node.
        remote_run = force_on_current_node(remote_run)

        # JupyterNotebooks don't work with remote tune runs out of the box
        # (e.g. via Ray client) as they don't have access to the main
        # process stdout. So we introduce a queue here that accepts
        # callables, which will then be executed on the driver side.
        if isinstance(progress_reporter, JupyterNotebookReporter):
            execute_queue = Queue(actor_options={
                "num_cpus": 0,
                **force_on_current_node(None)
            })
            progress_reporter.set_output_queue(execute_queue)

            def get_next_queue_item():
                try:
                    return execute_queue.get(block=False)
                except Empty:
                    return None

        else:
            # If we don't need a queue, use this dummy get fn instead of
            # scheduling an unneeded actor
            def get_next_queue_item():
                return None

        def _handle_execute_queue():
            execute_item = get_next_queue_item()
            while execute_item:
                if isinstance(execute_item, Callable):
                    execute_item()

                execute_item = get_next_queue_item()

        remote_future = remote_run.remote(_remote=False, **remote_run_kwargs)

        # ray.wait(...)[1] returns futures that are not ready, yet
        while ray.wait([remote_future], timeout=0.2)[1]:
            # Check if we have items to execute
            _handle_execute_queue()

        # Handle queue one last time
        _handle_execute_queue()

        return ray.get(remote_future)

    del remote_run_kwargs

    all_start = time.time()

    if loggers:
        # Raise DeprecationWarning in 1.9, remove in 1.10/1.11
        warnings.warn(
            "The `loggers` argument is deprecated. Please pass the respective "
            "`LoggerCallback` classes to the `callbacks` argument instead. "
            "See https://docs.ray.io/en/latest/tune/api_docs/logging.html")

    if mode and mode not in ["min", "max"]:
        raise ValueError(
            "The `mode` parameter passed to `tune.run()` has to be one of "
            "['min', 'max']")

    set_verbosity(verbose)

    config = config or {}
    sync_config = sync_config or SyncConfig()
    set_sync_periods(sync_config)

    if num_samples == -1:
        num_samples = sys.maxsize

    result_buffer_length = None

    # Create scheduler here as we need access to some of its properties
    if isinstance(scheduler, str):
        # importing at top level causes a recursive dependency
        from ray.tune.schedulers import create_scheduler

        scheduler = create_scheduler(scheduler)
    scheduler = scheduler or FIFOScheduler()

    if not scheduler.supports_buffered_results:
        # Result buffering with e.g. a Hyperband scheduler is a bad idea, as
        # hyperband tries to stop trials when processing brackets. With result
        # buffering, we might trigger this multiple times when evaluating
        # a single trial, which leads to unexpected behavior.
        env_result_buffer_length = os.getenv("TUNE_RESULT_BUFFER_LENGTH", "")
        if env_result_buffer_length:
            warnings.warn(
                f"You are using a {type(scheduler)} scheduler, but "
                f"TUNE_RESULT_BUFFER_LENGTH is set "
                f"({env_result_buffer_length}). This can lead to undesired "
                f"and faulty behavior, so the buffer length was forcibly set "
                f"to 1 instead.")
        result_buffer_length = 1

    if (isinstance(scheduler,
                   (PopulationBasedTraining, PopulationBasedTrainingReplay))
            and not reuse_actors):
        warnings.warn(
            "Consider boosting PBT performance by enabling `reuse_actors` as "
            "well as implementing `reset_config` for Trainable.")

    trial_executor = trial_executor or RayTrialExecutor(
        reuse_actors=reuse_actors, result_buffer_length=result_buffer_length)
    if isinstance(run_or_experiment, list):
        experiments = run_or_experiment
    else:
        experiments = [run_or_experiment]

    for i, exp in enumerate(experiments):
        if not isinstance(exp, Experiment):
            experiments[i] = Experiment(
                name=name,
                run=exp,
                stop=stop,
                time_budget_s=time_budget_s,
                config=config,
                resources_per_trial=resources_per_trial,
                num_samples=num_samples,
                local_dir=local_dir,
                sync_config=sync_config,
                trial_name_creator=trial_name_creator,
                trial_dirname_creator=trial_dirname_creator,
                log_to_file=log_to_file,
                checkpoint_freq=checkpoint_freq,
                checkpoint_at_end=checkpoint_at_end,
                keep_checkpoints_num=keep_checkpoints_num,
                checkpoint_score_attr=checkpoint_score_attr,
                export_formats=export_formats,
                max_failures=max_failures,
                restore=restore,
            )
    else:
        logger.debug("Ignoring some parameters passed into tune.run.")

    if fail_fast and max_failures != 0:
        raise ValueError("max_failures must be 0 if fail_fast=True.")

    if isinstance(search_alg, str):
        # importing at top level causes a recursive dependency
        from ray.tune.suggest import create_searcher

        search_alg = create_searcher(search_alg)

    # if local_mode=True is set during ray.init().
    is_local_mode = ray.worker._mode() == ray.worker.LOCAL_MODE

    if is_local_mode:
        max_concurrent_trials = 1

    if not search_alg:
        search_alg = BasicVariantGenerator(
            max_concurrent=max_concurrent_trials or 0)
    elif max_concurrent_trials or is_local_mode:
        if isinstance(search_alg, ConcurrencyLimiter):
            if not is_local_mode:
                if search_alg.max_concurrent != max_concurrent_trials:
                    raise ValueError(
                        "You have specified `max_concurrent_trials="
                        f"{max_concurrent_trials}`, but the `search_alg` is "
                        "already a `ConcurrencyLimiter` with `max_concurrent="
                        f"{search_alg.max_concurrent}. FIX THIS by setting "
                        "`max_concurrent_trials=None`.")
                else:
                    logger.warning(
                        "You have specified `max_concurrent_trials="
                        f"{max_concurrent_trials}`, but the `search_alg` is "
                        "already a `ConcurrencyLimiter`. "
                        "`max_concurrent_trials` will be ignored.")
        else:
            if max_concurrent_trials < 1:
                raise ValueError(
                    "`max_concurrent_trials` must be greater or equal than 1, "
                    f"got {max_concurrent_trials}.")
            if isinstance(search_alg, Searcher):
                search_alg = ConcurrencyLimiter(
                    search_alg, max_concurrent=max_concurrent_trials)
            elif not is_local_mode:
                logger.warning(
                    "You have passed a `SearchGenerator` instance as the "
                    "`search_alg`, but `max_concurrent_trials` requires a "
                    "`Searcher` instance`. `max_concurrent_trials` "
                    "will be ignored.")

    if isinstance(search_alg, Searcher):
        search_alg = SearchGenerator(search_alg)

    if config and not set_search_properties_backwards_compatible(
            search_alg.set_search_properties,
            metric,
            mode,
            config,
            **experiments[0].public_spec,
    ):
        if has_unresolved_values(config):
            raise ValueError(
                "You passed a `config` parameter to `tune.run()` with "
                "unresolved parameters, but the search algorithm was already "
                "instantiated with a search space. Make sure that `config` "
                "does not contain any more parameter definitions - include "
                "them in the search algorithm's search space if necessary.")

    if not scheduler.set_search_properties(metric, mode):
        raise ValueError(
            "You passed a `metric` or `mode` argument to `tune.run()`, but "
            "the scheduler you are using was already instantiated with their "
            "own `metric` and `mode` parameters. Either remove the arguments "
            "from your scheduler or from your call to `tune.run()`")

    # Create syncer callbacks
    callbacks = create_default_callbacks(callbacks,
                                         sync_config,
                                         metric=metric,
                                         loggers=loggers)

    runner = TrialRunner(
        search_alg=search_alg,
        scheduler=scheduler,
        local_checkpoint_dir=experiments[0].checkpoint_dir,
        remote_checkpoint_dir=experiments[0].remote_checkpoint_dir,
        sync_config=sync_config,
        stopper=experiments[0].stopper,
        resume=resume,
        server_port=server_port,
        fail_fast=fail_fast,
        trial_executor=trial_executor,
        callbacks=callbacks,
        metric=metric,
        # Driver should only sync trial checkpoints if
        # checkpoints are not synced to cloud
        driver_sync_trial_checkpoints=not bool(sync_config.upload_dir),
    )

    if not runner.resumed:
        for exp in experiments:
            search_alg.add_configurations([exp])
    else:
        logger.info("TrialRunner resumed, ignoring new add_experiment but "
                    "updating trial resources.")
        if resources_per_trial:
            runner.update_pending_trial_resources(resources_per_trial)

    progress_reporter = progress_reporter or detect_reporter()

    if not progress_reporter.set_search_properties(metric, mode):
        raise ValueError(
            "You passed a `metric` or `mode` argument to `tune.run()`, but "
            "the reporter you are using was already instantiated with their "
            "own `metric` and `mode` parameters. Either remove the arguments "
            "from your reporter or from your call to `tune.run()`")
    progress_reporter.set_total_samples(search_alg.total_samples)

    # Calls setup on callbacks
    runner.setup_experiments(experiments=experiments,
                             total_num_samples=search_alg.total_samples)

    # User Warning for GPUs
    if trial_executor.has_gpus():
        if isinstance(resources_per_trial,
                      dict) and "gpu" in resources_per_trial:
            # "gpu" is manually set.
            pass
        elif _check_default_resources_override(experiments[0].run_identifier):
            # "default_resources" is manually overridden.
            pass
        else:
            logger.warning("Tune detects GPUs, but no trials are using GPUs. "
                           "To enable trials to use GPUs, set "
                           "tune.run(resources_per_trial={'gpu': 1}...) "
                           "which allows Tune to expose 1 GPU to each trial. "
                           "You can also override "
                           "`Trainable.default_resource_request` if using the "
                           "Trainable API.")

    original_handler = signal.getsignal(signal.SIGINT)
    state = {signal.SIGINT: False}

    def sigint_handler(sig, frame):
        logger.warning(
            "SIGINT received (e.g. via Ctrl+C), ending Ray Tune run. "
            "This will try to checkpoint the experiment state one last time. "
            "Press CTRL+C one more time (or send SIGINT/SIGKILL/SIGTERM) "
            "to skip. ")
        state[signal.SIGINT] = True
        # Restore original signal handler to react to future SIGINT signals
        signal.signal(signal.SIGINT, original_handler)

    if not int(os.getenv("TUNE_DISABLE_SIGINT_HANDLER", "0")):
        signal.signal(signal.SIGINT, sigint_handler)

    tune_start = time.time()
    progress_reporter.set_start_time(tune_start)
    while not runner.is_finished() and not state[signal.SIGINT]:
        runner.step()
        if has_verbosity(Verbosity.V1_EXPERIMENT):
            _report_progress(runner, progress_reporter)
    tune_taken = time.time() - tune_start

    try:
        runner.checkpoint(force=True)
    except Exception as e:
        logger.warning(f"Trial Runner checkpointing failed: {str(e)}")

    if has_verbosity(Verbosity.V1_EXPERIMENT):
        _report_progress(runner, progress_reporter, done=True)

    wait_for_sync()
    runner.cleanup()

    incomplete_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            incomplete_trials += [trial]

    if incomplete_trials:
        if raise_on_failed_trial and not state[signal.SIGINT]:
            raise TuneError("Trials did not complete", incomplete_trials)
        else:
            logger.error("Trials did not complete: %s", incomplete_trials)

    all_taken = time.time() - all_start
    if has_verbosity(Verbosity.V1_EXPERIMENT):
        logger.info(f"Total run time: {all_taken:.2f} seconds "
                    f"({tune_taken:.2f} seconds for the tuning loop).")

    if state[signal.SIGINT]:
        logger.warning(
            "Experiment has been interrupted, but the most recent state was "
            "saved. You can continue running this experiment by passing "
            "`resume=True` to `tune.run()`")

    trials = runner.get_trials()
    return ExperimentAnalysis(
        runner.checkpoint_file,
        trials=trials,
        default_metric=metric,
        default_mode=mode,
        sync_config=sync_config,
    )
Exemple #24
0
    def testMultiStepRun(self):
        ray.init(num_cpus=4, num_gpus=2)
        runner = TrialRunner(BasicVariantGenerator())
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 5
            },
            "resources": Resources(cpu=1, gpu=1),
        }
        trials = [Trial("__fake", **kwargs), Trial("__fake", **kwargs)]
        for t in trials:
            runner.add_trial(t)

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(trials[1].status, Trial.PENDING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(trials[1].status, Trial.RUNNING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(trials[1].status, Trial.RUNNING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(trials[1].status, Trial.RUNNING)
Exemple #25
0
def test_trial_migration(start_connected_emptyhead_cluster):
    """Removing a node while cluster has space should migrate trial.

    The trial state should also be consistent with the checkpoint.
    """
    cluster = start_connected_emptyhead_cluster
    node = cluster.add_node(num_cpus=1)
    cluster.wait_for_nodes()

    runner = TrialRunner(BasicVariantGenerator())
    kwargs = {
        "stopping_criterion": {
            "training_iteration": 3
        },
        "checkpoint_freq": 2,
        "max_failures": 2
    }

    # Test recovery of trial that hasn't been checkpointed
    t = Trial("__fake", **kwargs)
    runner.add_trial(t)
    runner.step()  # start
    runner.step()  # 1 result
    assert t.last_result
    node2 = cluster.add_node(num_cpus=1)
    cluster.remove_node(node)
    cluster.wait_for_nodes()
    runner.step()  # Recovery step

    # TODO(rliaw): This assertion is not critical but will not pass
    #   because checkpoint handling is messy and should be refactored
    #   rather than hotfixed.
    # assert t.last_result is None, "Trial result not restored correctly."
    for i in range(3):
        runner.step()

    assert t.status == Trial.TERMINATED

    # Test recovery of trial that has been checkpointed
    t2 = Trial("__fake", **kwargs)
    runner.add_trial(t2)
    runner.step()  # start
    runner.step()  # 1 result
    runner.step()  # 2 result and checkpoint
    assert t2.has_checkpoint()
    node3 = cluster.add_node(num_cpus=1)
    cluster.remove_node(node2)
    cluster.wait_for_nodes()
    runner.step()  # Recovery step
    assert t2.last_result["training_iteration"] == 2
    for i in range(1):
        runner.step()

    assert t2.status == Trial.TERMINATED

    # Test recovery of trial that won't be checkpointed
    t3 = Trial("__fake", **{"stopping_criterion": {"training_iteration": 3}})
    runner.add_trial(t3)
    runner.step()  # start
    runner.step()  # 1 result
    cluster.add_node(num_cpus=1)
    cluster.remove_node(node3)
    cluster.wait_for_nodes()
    runner.step()  # Error handling step
    assert t3.status == Trial.ERROR

    with pytest.raises(TuneError):
        runner.step()
Exemple #26
0
    def testCheckpointing(self):
        ray.init(num_cpus=1, num_gpus=1)
        runner = TrialRunner()
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 1
            },
            "resources": Resources(cpu=1, gpu=1),
            "checkpoint_freq": 1,
        }
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()  # Start trial
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)
        runner.step()  # Process result, dispatch save
        runner.step()  # Process save, stop trial
        kwargs["restore_path"] = trials[0].checkpoint.value
        self.assertEqual(trials[0].status, Trial.TERMINATED)

        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()
        self.assertEqual(trials[1].status, Trial.PENDING)
        runner.step()  # Start trial, dispatch restore
        self.assertEqual(trials[1].status, Trial.RUNNING)

        runner.step()  # Process restore
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[1].runner.get_info.remote()), 1)
        self.addCleanup(os.remove, trials[0].checkpoint.value)
Exemple #27
0
def test_migration_checkpoint_removal(start_connected_emptyhead_cluster):
    """Test checks that trial restarts if checkpoint is lost w/ node fail."""
    cluster = start_connected_emptyhead_cluster
    node = cluster.add_node(num_cpus=1)
    cluster.wait_for_nodes()

    runner = TrialRunner(BasicVariantGenerator())
    kwargs = {
        "stopping_criterion": {
            "training_iteration": 3
        },
        "checkpoint_freq": 2,
        "max_failures": 2
    }

    # Test recovery of trial that has been checkpointed
    t1 = Trial("__fake", **kwargs)
    runner.add_trial(t1)
    runner.step()  # start
    runner.step()  # 1 result
    runner.step()  # 2 result and checkpoint
    assert t1.has_checkpoint()
    cluster.add_node(num_cpus=1)
    cluster.remove_node(node)
    cluster.wait_for_nodes()
    shutil.rmtree(os.path.dirname(t1._checkpoint.value))

    runner.step()  # Recovery step
    for i in range(3):
        runner.step()

    assert t1.status == Trial.TERMINATED
Exemple #28
0
    def testPauseResumeCheckpointCount(self):
        ray.init(num_cpus=2)
        tempdir = tempfile.mkdtemp()
        self.addCleanup(shutil.rmtree, tempdir)

        trial = Trial("__fake", keep_checkpoints_num=2)
        trial.init_logdir()
        trial.checkpoint_manager.delete = lambda cp: shutil.rmtree(cp.value)

        def write_checkpoint(trial: Trial, index: int):
            checkpoint_dir = TrainableUtil.make_checkpoint_dir(trial.logdir,
                                                               index=index)
            result = {"training_iteration": index}
            with open(os.path.join(checkpoint_dir, "cp.json"), "w") as f:
                json.dump(result, f)

            tune_cp = _TuneCheckpoint(_TuneCheckpoint.PERSISTENT,
                                      checkpoint_dir, result)
            trial.saving_to = tune_cp
            trial.on_checkpoint(tune_cp)

            return checkpoint_dir

        def get_checkpoint_dirs(trial: Trial):
            return [
                d for d in os.listdir(trial.logdir)
                if d.startswith("checkpoint_")
            ]

        runner = TrialRunner(local_checkpoint_dir=tempdir)
        runner.add_trial(trial)

        # Write 1 checkpoint
        result = write_checkpoint(trial, 1)
        runner._on_saving_result(trial, result)

        # Expect 1 checkpoint
        cp_dirs = get_checkpoint_dirs(trial)
        self.assertEqual(len(cp_dirs), 1, msg=f"Checkpoint dirs: {cp_dirs}")

        # Write second checkpoint
        result = write_checkpoint(trial, 2)
        runner._on_saving_result(trial, result)

        # Expect 2 checkpoints
        cp_dirs = get_checkpoint_dirs(trial)
        self.assertEqual(len(cp_dirs), 2, msg=f"Checkpoint dirs: {cp_dirs}")

        # Write third checkpoint
        result = write_checkpoint(trial, 3)
        runner._on_saving_result(trial, result)

        # Expect 2 checkpoints because keep_checkpoints_num = 2
        cp_dirs = get_checkpoint_dirs(trial)
        self.assertEqual(len(cp_dirs), 2, msg=f"Checkpoint dirs: {cp_dirs}")

        # Re-instantiate trial runner and resume
        runner.checkpoint(force=True)
        runner = TrialRunner(local_checkpoint_dir=tempdir)
        runner.resume()

        trial = runner.get_trials()[0]
        trial.checkpoint_manager.delete = lambda cp: shutil.rmtree(cp.value)

        # Write fourth checkpoint
        result = write_checkpoint(trial, 4)
        runner._on_saving_result(trial, result)

        # Expect 2 checkpoints because keep_checkpoints_num = 2
        cp_dirs = get_checkpoint_dirs(trial)
        self.assertEqual(len(cp_dirs), 2, msg=f"Checkpoint dirs: {cp_dirs}")

        # Write fifth checkpoint
        result = write_checkpoint(trial, 5)
        runner._on_saving_result(trial, result)

        # Expect 2 checkpoints because keep_checkpoints_num = 2
        cp_dirs = get_checkpoint_dirs(trial)
        self.assertEqual(len(cp_dirs), 2, msg=f"Checkpoint dirs: {cp_dirs}")

        # Checkpoints before restore should be deleted
        self.assertIn("checkpoint_000004", cp_dirs)
        self.assertIn("checkpoint_000005", cp_dirs)

        self.assertNotIn("checkpoint_000002", cp_dirs)
        self.assertNotIn("checkpoint_000003", cp_dirs)
Exemple #29
0
    def testTrialNoCheckpointSave(self):
        """Check that non-checkpointing trials *are* saved."""
        os.environ["TUNE_MAX_PENDING_TRIALS_PG"] = "1"

        ray.init(num_cpus=3)

        runner = TrialRunner(local_checkpoint_dir=self.tmpdir, checkpoint_period=0)
        runner.add_trial(
            Trial(
                "__fake",
                trial_id="non_checkpoint",
                stopping_criterion={"training_iteration": 2},
            )
        )

        while not all(t.status == Trial.TERMINATED for t in runner.get_trials()):
            runner.step()

        runner.add_trial(
            Trial(
                "__fake",
                trial_id="checkpoint",
                checkpoint_at_end=True,
                stopping_criterion={"training_iteration": 2},
            )
        )

        while not all(t.status == Trial.TERMINATED for t in runner.get_trials()):
            runner.step()

        runner.add_trial(
            Trial(
                "__fake",
                trial_id="pending",
                stopping_criterion={"training_iteration": 2},
            )
        )

        runner.step()
        runner.step()

        runner2 = TrialRunner(resume="LOCAL", local_checkpoint_dir=self.tmpdir)
        new_trials = runner2.get_trials()
        self.assertEqual(len(new_trials), 3)
        self.assertTrue(runner2.get_trial("non_checkpoint").status == Trial.TERMINATED)
        self.assertTrue(runner2.get_trial("checkpoint").status == Trial.TERMINATED)
        self.assertTrue(runner2.get_trial("pending").status == Trial.PENDING)
        self.assertTrue(runner2.get_trial("pending").has_reported_at_least_once)
        runner2.step()
Exemple #30
0
    def testResourceScheduler(self):
        ray.init(num_cpus=4, num_gpus=1)
        runner = TrialRunner()
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 1
            },
            "resources": Resources(cpu=1, gpu=1),
        }
        trials = [Trial("__fake", **kwargs), Trial("__fake", **kwargs)]
        for t in trials:
            runner.add_trial(t)

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(trials[1].status, Trial.PENDING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.PENDING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.TERMINATED)
Exemple #31
0
    def testCheckpointWithFunction(self):
        ray.init(num_cpus=2)

        trial = Trial(
            "__fake",
            config={
                "callbacks": {
                    "on_episode_start": lambda i: i,
                }
            },
            checkpoint_freq=1,
        )
        runner = TrialRunner(local_checkpoint_dir=self.tmpdir, checkpoint_period=0)
        runner.add_trial(trial)
        for _ in range(5):
            runner.step()
        # force checkpoint
        runner.checkpoint()
        runner2 = TrialRunner(resume="LOCAL", local_checkpoint_dir=self.tmpdir)
        new_trial = runner2.get_trials()[0]
        self.assertTrue("callbacks" in new_trial.config)
        self.assertTrue("on_episode_start" in new_trial.config["callbacks"])
Exemple #32
0
def run_experiments(experiments,
                    search_alg=None,
                    scheduler=None,
                    with_server=False,
                    server_port=TuneServer.DEFAULT_PORT,
                    verbose=2,
                    resume=False,
                    queue_trials=False,
                    reuse_actors=False,
                    trial_executor=None,
                    raise_on_failed_trial=True):
    """Runs and blocks until all trials finish.

    Args:
        experiments (Experiment | list | dict): Experiments to run. Will be
            passed to `search_alg` via `add_configurations`.
        search_alg (SearchAlgorithm): Search Algorithm. Defaults to
            BasicVariantGenerator.
        scheduler (TrialScheduler): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, and HyperBand.
        with_server (bool): Starts a background Tune server. Needed for
            using the Client API.
        server_port (int): Port number for launching TuneServer.
        verbose (int): 0, 1, or 2. Verbosity mode. 0 = silent,
            1 = only status updates, 2 = status and trial results.
        resume (bool|"prompt"): If checkpoint exists, the experiment will
            resume from there. If resume is "prompt", Tune will prompt if
            checkpoint detected.
        queue_trials (bool): Whether to queue trials when the cluster does
            not currently have enough resources to launch one. This should
            be set to True when running on an autoscaling cluster to enable
            automatic scale-up.
        reuse_actors (bool): Whether to reuse actors between different trials
            when possible. This can drastically speed up experiments that start
            and stop actors often (e.g., PBT in time-multiplexing mode). This
            requires trials to have the same resource requirements.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.

    Examples:
        >>> experiment_spec = Experiment("experiment", my_func)
        >>> run_experiments(experiments=experiment_spec)

        >>> experiment_spec = {"experiment": {"run": my_func}}
        >>> run_experiments(experiments=experiment_spec)

        >>> run_experiments(
        >>>     experiments=experiment_spec,
        >>>     scheduler=MedianStoppingRule(...))

        >>> run_experiments(
        >>>     experiments=experiment_spec,
        >>>     search_alg=SearchAlgorithm(),
        >>>     scheduler=MedianStoppingRule(...))

    Returns:
        List of Trial objects, holding data for each executed trial.

    """
    # This is important to do this here
    # because it schematize the experiments
    # and it conducts the implicit registration.
    experiments = convert_to_experiment_list(experiments)
    checkpoint_dir = _find_checkpoint_dir(experiments)

    runner = None
    restore = False

    if TrialRunner.checkpoint_exists(checkpoint_dir):
        if resume == "prompt":
            msg = ("Found incomplete experiment at {}. "
                   "Would you like to resume it?".format(checkpoint_dir))
            restore = click.confirm(msg, default=False)
            if restore:
                logger.info("Tip: to always resume, "
                            "pass resume=True to run_experiments()")
            else:
                logger.info("Tip: to always start a new experiment, "
                            "pass resume=False to run_experiments()")
        elif resume:
            restore = True
        else:
            logger.info(
                "Tip: to resume incomplete experiments, "
                "pass resume='prompt' or resume=True to run_experiments()")
    else:
        logger.info(
            "Did not find checkpoint file in {}.".format(checkpoint_dir))

    if restore:
        runner = try_restore_runner(checkpoint_dir, search_alg, scheduler,
                                    trial_executor)
    else:
        logger.info("Starting a new experiment.")

    if not runner:
        if scheduler is None:
            scheduler = FIFOScheduler()

        if search_alg is None:
            search_alg = BasicVariantGenerator()

        search_alg.add_configurations(experiments)

        runner = TrialRunner(search_alg,
                             scheduler=scheduler,
                             metadata_checkpoint_dir=checkpoint_dir,
                             launch_web_server=with_server,
                             server_port=server_port,
                             verbose=bool(verbose > 1),
                             queue_trials=queue_trials,
                             reuse_actors=reuse_actors,
                             trial_executor=trial_executor)

    if verbose:
        print(runner.debug_string(max_debug=99999))

    last_debug = 0
    while not runner.is_finished():
        runner.step()
        if time.time() - last_debug > DEBUG_PRINT_INTERVAL:
            if verbose:
                print(runner.debug_string())
            last_debug = time.time()

    if verbose:
        print(runner.debug_string(max_debug=99999))

    wait_for_log_sync()

    errored_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            errored_trials += [trial]

    if errored_trials:
        if raise_on_failed_trial:
            raise TuneError("Trials did not complete", errored_trials)
        else:
            logger.error("Trials did not complete: %s", errored_trials)

    return runner.get_trials()
Exemple #33
0
def run(run_or_experiment,
        name=None,
        stop=None,
        config=None,
        resources_per_trial=None,
        num_samples=1,
        local_dir=None,
        upload_dir=None,
        trial_name_creator=None,
        loggers=None,
        sync_to_cloud=None,
        sync_to_driver=None,
        checkpoint_freq=0,
        checkpoint_at_end=False,
        sync_on_checkpoint=True,
        keep_checkpoints_num=None,
        checkpoint_score_attr=None,
        global_checkpoint_period=10,
        export_formats=None,
        max_failures=0,
        restore=None,
        search_alg=None,
        scheduler=None,
        with_server=False,
        server_port=TuneServer.DEFAULT_PORT,
        verbose=2,
        resume=False,
        queue_trials=False,
        reuse_actors=False,
        trial_executor=None,
        raise_on_failed_trial=True,
        return_trials=False,
        ray_auto_init=True,
        sync_function=None):
    """Executes training.

    Args:
        run_or_experiment (function|class|str|Experiment): If
            function|class|str, this is the algorithm or model to train.
            This may refer to the name of a built-on algorithm
            (e.g. RLLib's DQN or PPO), a user-defined trainable
            function or class, or the string identifier of a
            trainable function or class registered in the tune registry.
            If Experiment, then Tune will execute training based on
            Experiment.spec.
        name (str): Name of experiment.
        stop (dict|func): The stopping criteria. If dict, the keys may be
            any field in the return result of 'train()', whichever is
            reached first. If function, it must take (trial_id, result) as
            arguments and return a boolean (True if trial should be stopped,
            False otherwise).
        config (dict): Algorithm-specific configuration for Tune variant
            generation (e.g. env, hyperparams). Defaults to empty dict.
            Custom search algorithms may ignore this.
        resources_per_trial (dict): Machine resources to allocate per trial,
            e.g. ``{"cpu": 64, "gpu": 8}``. Note that GPUs will not be
            assigned unless you specify them here. Defaults to 1 CPU and 0
            GPUs in ``Trainable.default_resource_request()``.
        num_samples (int): Number of times to sample from the
            hyperparameter space. Defaults to 1. If `grid_search` is
            provided as an argument, the grid will be repeated
            `num_samples` of times.
        local_dir (str): Local dir to save training results to.
            Defaults to ``~/ray_results``.
        upload_dir (str): Optional URI to sync training results and checkpoints
            to (e.g. ``s3://bucket`` or ``gs://bucket``).
        trial_name_creator (func): Optional function for generating
            the trial string representation.
        loggers (list): List of logger creators to be used with
            each Trial. If None, defaults to ray.tune.logger.DEFAULT_LOGGERS.
            See `ray/tune/logger.py`.
        sync_to_cloud (func|str): Function for syncing the local_dir to and
            from upload_dir. If string, then it must be a string template that
            includes `{source}` and `{target}` for the syncer to run. If not
            provided, the sync command defaults to standard S3 or gsutil sync
            commands.
        sync_to_driver (func|str|bool): Function for syncing trial logdir from
            remote node to local. If string, then it must be a string template
            that includes `{source}` and `{target}` for the syncer to run.
            If True or not provided, it defaults to using rsync. If False,
            syncing to driver is disabled.
        checkpoint_freq (int): How many training iterations between
            checkpoints. A value of 0 (default) disables checkpointing.
        checkpoint_at_end (bool): Whether to checkpoint at the end of the
            experiment regardless of the checkpoint_freq. Default is False.
        sync_on_checkpoint (bool): Force sync-down of trial checkpoint to
            driver. If set to False, checkpoint syncing from worker to driver
            is asynchronous and best-effort. This does not affect persistent
            storage syncing. Defaults to True.
        keep_checkpoints_num (int): Number of checkpoints to keep. A value of
            `None` keeps all checkpoints. Defaults to `None`. If set, need
            to provide `checkpoint_score_attr`.
        checkpoint_score_attr (str): Specifies by which attribute to rank the
            best checkpoint. Default is increasing order. If attribute starts
            with `min-` it will rank attribute in decreasing order, i.e.
            `min-validation_loss`.
        global_checkpoint_period (int): Seconds between global checkpointing.
            This does not affect `checkpoint_freq`, which specifies frequency
            for individual trials.
        export_formats (list): List of formats that exported at the end of
            the experiment. Default is None.
        max_failures (int): Try to recover a trial at least this many times.
            Ray will recover from the latest checkpoint if present.
            Setting to -1 will lead to infinite recovery retries.
            Setting to 0 will disable retries. Defaults to 3.
        restore (str): Path to checkpoint. Only makes sense to set if
            running 1 trial. Defaults to None.
        search_alg (SearchAlgorithm): Search Algorithm. Defaults to
            BasicVariantGenerator.
        scheduler (TrialScheduler): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, HyperBand and PopulationBasedTraining. Refer to
            ray.tune.schedulers for more options.
        with_server (bool): Starts a background Tune server. Needed for
            using the Client API.
        server_port (int): Port number for launching TuneServer.
        verbose (int): 0, 1, or 2. Verbosity mode. 0 = silent,
            1 = only status updates, 2 = status and trial results.
        resume (str|bool): One of "LOCAL", "REMOTE", "PROMPT", or bool.
            LOCAL/True restores the checkpoint from the local_checkpoint_dir.
            REMOTE restores the checkpoint from remote_checkpoint_dir.
            PROMPT provides CLI feedback. False forces a new
            experiment. If resume is set but checkpoint does not exist,
            ValueError will be thrown.
        queue_trials (bool): Whether to queue trials when the cluster does
            not currently have enough resources to launch one. This should
            be set to True when running on an autoscaling cluster to enable
            automatic scale-up.
        reuse_actors (bool): Whether to reuse actors between different trials
            when possible. This can drastically speed up experiments that start
            and stop actors often (e.g., PBT in time-multiplexing mode). This
            requires trials to have the same resource requirements.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.
        ray_auto_init (bool): Automatically starts a local Ray cluster
            if using a RayTrialExecutor (which is the default) and
            if Ray is not initialized. Defaults to True.
        sync_function: Deprecated. See `sync_to_cloud` and
            `sync_to_driver`.

    Returns:
        List of Trial objects.

    Raises:
        TuneError if any trials failed and `raise_on_failed_trial` is True.

    Examples:
        >>> tune.run(mytrainable, scheduler=PopulationBasedTraining())

        >>> tune.run(mytrainable, num_samples=5, reuse_actors=True)

        >>> tune.run(
        >>>     "PG",
        >>>     num_samples=5,
        >>>     config={
        >>>         "env": "CartPole-v0",
        >>>         "lr": tune.sample_from(lambda _: np.random.rand())
        >>>     }
        >>> )
    """
    trial_executor = trial_executor or RayTrialExecutor(
        queue_trials=queue_trials,
        reuse_actors=reuse_actors,
        ray_auto_init=ray_auto_init)
    if isinstance(run_or_experiment, list):
        experiments = run_or_experiment
    else:
        experiments = [run_or_experiment]
    if len(experiments) > 1:
        logger.info(
            "Running multiple concurrent experiments is experimental and may "
            "not work with certain features.")
    for i, exp in enumerate(experiments):
        if not isinstance(exp, Experiment):
            run_identifier = Experiment.register_if_needed(exp)
            experiments[i] = Experiment(
                name=name,
                run=run_identifier,
                stop=stop,
                config=config,
                resources_per_trial=resources_per_trial,
                num_samples=num_samples,
                local_dir=local_dir,
                upload_dir=upload_dir,
                sync_to_driver=sync_to_driver,
                trial_name_creator=trial_name_creator,
                loggers=loggers,
                checkpoint_freq=checkpoint_freq,
                checkpoint_at_end=checkpoint_at_end,
                sync_on_checkpoint=sync_on_checkpoint,
                keep_checkpoints_num=keep_checkpoints_num,
                checkpoint_score_attr=checkpoint_score_attr,
                export_formats=export_formats,
                max_failures=max_failures,
                restore=restore,
                sync_function=sync_function)
    else:
        logger.debug("Ignoring some parameters passed into tune.run.")

    if sync_to_cloud:
        for exp in experiments:
            assert exp.remote_checkpoint_dir, (
                "Need `upload_dir` if `sync_to_cloud` given.")

    runner = TrialRunner(
        search_alg=search_alg or BasicVariantGenerator(),
        scheduler=scheduler or FIFOScheduler(),
        local_checkpoint_dir=experiments[0].checkpoint_dir,
        remote_checkpoint_dir=experiments[0].remote_checkpoint_dir,
        sync_to_cloud=sync_to_cloud,
        checkpoint_period=global_checkpoint_period,
        resume=resume,
        launch_web_server=with_server,
        server_port=server_port,
        verbose=bool(verbose > 1),
        trial_executor=trial_executor)

    for exp in experiments:
        runner.add_experiment(exp)

    if IS_NOTEBOOK:
        reporter = JupyterNotebookReporter(overwrite=verbose < 2)
    else:
        reporter = CLIReporter()

    # User Warning for GPUs
    if trial_executor.has_gpus():
        if isinstance(resources_per_trial,
                      dict) and "gpu" in resources_per_trial:
            # "gpu" is manually set.
            pass
        elif _check_default_resources_override(experiments[0].run_identifier):
            # "default_resources" is manually overriden.
            pass
        else:
            logger.warning("Tune detects GPUs, but no trials are using GPUs. "
                           "To enable trials to use GPUs, set "
                           "tune.run(resources_per_trial={'gpu': 1}...) "
                           "which allows Tune to expose 1 GPU to each trial. "
                           "You can also override "
                           "`Trainable.default_resource_request` if using the "
                           "Trainable API.")

    last_debug = 0
    while not runner.is_finished():
        runner.step()
        if time.time() - last_debug > DEBUG_PRINT_INTERVAL:
            if verbose:
                reporter.report(runner)
            last_debug = time.time()

    try:
        runner.checkpoint(force=True)
    except Exception:
        logger.exception("Trial Runner checkpointing failed.")

    if verbose:
        reporter.report(runner)

    wait_for_sync()

    errored_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            errored_trials += [trial]

    if errored_trials:
        if raise_on_failed_trial:
            raise TuneError("Trials did not complete", errored_trials)
        else:
            logger.error("Trials did not complete: %s", errored_trials)

    trials = runner.get_trials()
    if return_trials:
        return trials
    logger.info("Returning an analysis object by default. You can call "
                "`analysis.trials` to retrieve a list of trials. "
                "This message will be removed in future versions of Tune.")
    return ExperimentAnalysis(runner.checkpoint_file, trials=trials)
Exemple #34
0
def test_cluster_down_simple(start_connected_cluster, tmpdir):
    """Tests that TrialRunner save/restore works on cluster shutdown."""
    cluster = start_connected_cluster
    cluster.add_node(num_cpus=1)
    cluster.wait_for_nodes()

    dirpath = str(tmpdir)
    runner = TrialRunner(
        BasicVariantGenerator(), metadata_checkpoint_dir=dirpath)
    kwargs = {
        "stopping_criterion": {
            "training_iteration": 2
        },
        "checkpoint_freq": 1,
        "max_failures": 1
    }
    trials = [Trial("__fake", **kwargs), Trial("__fake", **kwargs)]
    for t in trials:
        runner.add_trial(t)

    runner.step()  # start
    runner.step()  # start2
    runner.step()  # step
    assert all(t.status == Trial.RUNNING for t in runner.get_trials())
    runner.checkpoint()

    cluster.shutdown()
    ray.shutdown()

    cluster = _start_new_cluster()
    runner = TrialRunner.restore(dirpath)
    runner.step()  # start
    runner.step()  # start2

    for i in range(3):
        runner.step()

    with pytest.raises(TuneError):
        runner.step()

    assert all(t.status == Trial.TERMINATED for t in runner.get_trials())
    cluster.shutdown()
Exemple #35
0
    def testCheckpointing(self):
        ray.init(num_cpus=1, num_gpus=1)
        runner = TrialRunner(BasicVariantGenerator())
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 1
            },
            "resources": Resources(cpu=1, gpu=1),
        }
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)
        path = runner.trial_executor.save(trials[0])
        kwargs["restore_path"] = path

        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.PENDING)

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[1].runner.get_info.remote()), 1)
        self.addCleanup(os.remove, path)
Exemple #36
0
def test_cluster_interrupt(start_connected_cluster, tmpdir):
    """Tests run_experiment on cluster shutdown with actual interrupt.

    This is an end-to-end test.
    """
    cluster = start_connected_cluster
    dirpath = str(tmpdir)

    # Needs to be in scope for pytest
    class _Mock(tune.Trainable):
        """Finishes on the 4th iteration."""

        def _setup(self, config):
            self.state = {"hi": 0}

        def _train(self):
            self.state["hi"] += 1
            time.sleep(0.5)
            return {"done": self.state["hi"] >= 4}

        def _save(self, path):
            return self.state

        def _restore(self, state):
            self.state = state

    # Removes indent from class.
    reformatted = "\n".join(line[4:] if len(line) else line
                            for line in inspect.getsource(_Mock).split("\n"))

    script = """
import time
import ray
from ray import tune

ray.init(redis_address="{redis_address}")

{fail_class_code}

kwargs = dict(
    run={fail_class},
    stop=dict(training_iteration=5),
    local_dir="{checkpoint_dir}",
    checkpoint_freq=1,
    max_failures=1)

tune.run_experiments(
    dict(experiment=kwargs),
    raise_on_failed_trial=False)
""".format(
        redis_address=cluster.redis_address,
        checkpoint_dir=dirpath,
        fail_class_code=reformatted,
        fail_class=_Mock.__name__)
    run_string_as_driver_nonblocking(script)

    # Wait until the right checkpoint is saved.
    # The trainable returns every 0.5 seconds, so this should not miss
    # the checkpoint.
    metadata_checkpoint_dir = os.path.join(dirpath, "experiment")
    for i in range(50):
        if TrialRunner.checkpoint_exists(metadata_checkpoint_dir):
            # Inspect the internal trialrunner
            runner = TrialRunner.restore(metadata_checkpoint_dir)
            trials = runner.get_trials()
            last_res = trials[0].last_result
            if last_res and last_res.get("training_iteration") == 3:
                break
        time.sleep(0.2)

    if not TrialRunner.checkpoint_exists(metadata_checkpoint_dir):
        raise RuntimeError("Checkpoint file didn't appear.")

    ray.shutdown()
    cluster.shutdown()
    cluster = _start_new_cluster()
    Experiment._register_if_needed(_Mock)

    # Inspect the internal trialrunner
    runner = TrialRunner.restore(metadata_checkpoint_dir)
    trials = runner.get_trials()
    assert trials[0].last_result["training_iteration"] == 3
    assert trials[0].status == Trial.PENDING

    # Restore properly from checkpoint
    trials2 = tune.run_experiments(
        {
            "experiment": {
                "run": _Mock,
                "local_dir": dirpath,
                "checkpoint_freq": 1
            }
        },
        resume=True,
        raise_on_failed_trial=False)
    assert all(t.status == Trial.TERMINATED for t in trials2)
    assert {t.trial_id for t in trials2} == {t.trial_id for t in trials}
    cluster.shutdown()
Exemple #37
0
    def testRestoreMetricsAfterCheckpointing(self):
        ray.init(num_cpus=1, num_gpus=1)
        runner = TrialRunner(BasicVariantGenerator())
        kwargs = {
            "resources": Resources(cpu=1, gpu=1),
        }
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        self.assertEqual(ray.get(trials[0].runner.set_info.remote(1)), 1)
        path = runner.trial_executor.save(trials[0])
        runner.trial_executor.stop_trial(trials[0])
        kwargs["restore_path"] = path

        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()
        self.assertEqual(trials[0].status, Trial.TERMINATED)
        self.assertEqual(trials[1].status, Trial.RUNNING)
        runner.step()
        self.assertEqual(trials[1].last_result["timesteps_since_restore"], 10)
        self.assertEqual(trials[1].last_result["iterations_since_restore"], 1)
        self.assertGreater(trials[1].last_result["time_since_restore"], 0)
        runner.step()
        self.assertEqual(trials[1].last_result["timesteps_since_restore"], 20)
        self.assertEqual(trials[1].last_result["iterations_since_restore"], 2)
        self.assertGreater(trials[1].last_result["time_since_restore"], 0)
        self.addCleanup(os.remove, path)
Exemple #38
0
def run_experiments(experiments, scheduler=None, with_server=False,
                    server_port=TuneServer.DEFAULT_PORT, verbose=True):

    # Make sure rllib agents are registered
    from ray import rllib  # noqa # pylint: disable=unused-import

    if scheduler is None:
        scheduler = FIFOScheduler()

    runner = TrialRunner(
        scheduler, launch_web_server=with_server, server_port=server_port)

    for name, spec in experiments.items():
        for trial in generate_trials(spec, name):
            trial.set_verbose(verbose)
            runner.add_trial(trial)
    print(runner.debug_string(max_debug=99999))

    last_debug = 0
    while not runner.is_finished():
        runner.step()
        if time.time() - last_debug > DEBUG_PRINT_INTERVAL:
            print(runner.debug_string())
            last_debug = time.time()

    print(runner.debug_string(max_debug=99999))

    for trial in runner.get_trials():
        # TODO(rliaw): What about errored?
        if trial.status != Trial.TERMINATED:
            raise TuneError("Trial did not complete", trial)

    wait_for_log_sync()
    return runner.get_trials()
Exemple #39
0
    def testResultDone(self):
        """Tests that last_result is marked `done` after trial is complete."""
        ray.init(num_cpus=1, num_gpus=1)
        runner = TrialRunner(BasicVariantGenerator())
        kwargs = {
            "stopping_criterion": {
                "training_iteration": 2
            },
            "resources": Resources(cpu=1, gpu=1),
        }
        runner.add_trial(Trial("__fake", **kwargs))
        trials = runner.get_trials()

        runner.step()
        self.assertEqual(trials[0].status, Trial.RUNNING)
        runner.step()
        self.assertNotEqual(trials[0].last_result[DONE], True)
        runner.step()
        self.assertEqual(trials[0].last_result[DONE], True)
Exemple #40
0
def run_experiments(experiments,
                    search_alg=None,
                    scheduler=None,
                    with_server=False,
                    server_port=TuneServer.DEFAULT_PORT,
                    verbose=True,
                    resume=False,
                    queue_trials=False,
                    trial_executor=None,
                    raise_on_failed_trial=True):
    """Runs and blocks until all trials finish.

    Args:
        experiments (Experiment | list | dict): Experiments to run. Will be
            passed to `search_alg` via `add_configurations`.
        search_alg (SearchAlgorithm): Search Algorithm. Defaults to
            BasicVariantGenerator.
        scheduler (TrialScheduler): Scheduler for executing
            the experiment. Choose among FIFO (default), MedianStopping,
            AsyncHyperBand, and HyperBand.
        with_server (bool): Starts a background Tune server. Needed for
            using the Client API.
        server_port (int): Port number for launching TuneServer.
        verbose (bool): How much output should be printed for each trial.
        resume (bool|"prompt"): If checkpoint exists, the experiment will
            resume from there. If resume is "prompt", Tune will prompt if
            checkpoint detected.
        queue_trials (bool): Whether to queue trials when the cluster does
            not currently have enough resources to launch one. This should
            be set to True when running on an autoscaling cluster to enable
            automatic scale-up.
        trial_executor (TrialExecutor): Manage the execution of trials.
        raise_on_failed_trial (bool): Raise TuneError if there exists failed
            trial (of ERROR state) when the experiments complete.

    Examples:
        >>> experiment_spec = Experiment("experiment", my_func)
        >>> run_experiments(experiments=experiment_spec)

        >>> experiment_spec = {"experiment": {"run": my_func}}
        >>> run_experiments(experiments=experiment_spec)

        >>> run_experiments(
        >>>     experiments=experiment_spec,
        >>>     scheduler=MedianStoppingRule(...))

        >>> run_experiments(
        >>>     experiments=experiment_spec,
        >>>     search_alg=SearchAlgorithm(),
        >>>     scheduler=MedianStoppingRule(...))

    Returns:
        List of Trial objects, holding data for each executed trial.

    """
    # This is important to do this here
    # because it schematize the experiments
    # and it conducts the implicit registration.
    experiments = convert_to_experiment_list(experiments)
    checkpoint_dir = _find_checkpoint_dir(experiments)

    runner = None
    restore = False

    if os.path.exists(
            os.path.join(checkpoint_dir, TrialRunner.CKPT_FILE_NAME)):
        if resume == "prompt":
            msg = ("Found incomplete experiment at {}. "
                   "Would you like to resume it?".format(checkpoint_dir))
            restore = click.confirm(msg, default=False)
            if restore:
                logger.info("Tip: to always resume, "
                            "pass resume=True to run_experiments()")
            else:
                logger.info("Tip: to always start a new experiment, "
                            "pass resume=False to run_experiments()")
        elif resume:
            restore = True
        else:
            logger.info(
                "Tip: to resume incomplete experiments, "
                "pass resume='prompt' or resume=True to run_experiments()")
    else:
        logger.info(
            "Did not find checkpoint file in {}.".format(checkpoint_dir))

    if restore:
        runner = try_restore_runner(checkpoint_dir, search_alg, scheduler,
                                    trial_executor)
    else:
        logger.info("Starting a new experiment.")

    if not runner:
        if scheduler is None:
            scheduler = FIFOScheduler()

        if search_alg is None:
            search_alg = BasicVariantGenerator()

        search_alg.add_configurations(experiments)

        runner = TrialRunner(
            search_alg,
            scheduler=scheduler,
            metadata_checkpoint_dir=checkpoint_dir,
            launch_web_server=with_server,
            server_port=server_port,
            verbose=verbose,
            queue_trials=queue_trials,
            trial_executor=trial_executor)

    print(runner.debug_string(max_debug=99999))

    last_debug = 0
    while not runner.is_finished():
        runner.step()
        if time.time() - last_debug > DEBUG_PRINT_INTERVAL:
            print(runner.debug_string())
            last_debug = time.time()

    print(runner.debug_string(max_debug=99999))

    wait_for_log_sync()

    errored_trials = []
    for trial in runner.get_trials():
        if trial.status != Trial.TERMINATED:
            errored_trials += [trial]

    if errored_trials:
        if raise_on_failed_trial:
            raise TuneError("Trials did not complete", errored_trials)
        else:
            logger.error("Trials did not complete: %s", errored_trials)

    return runner.get_trials()
Exemple #41
0
    def testTrialErrorResumeTrue(self):
        ray.init(num_cpus=3, local_mode=True, include_dashboard=False)
        runner = TrialRunner(local_checkpoint_dir=self.tmpdir)
        kwargs = {
            "stopping_criterion": {"training_iteration": 4},
            "resources": Resources(cpu=1, gpu=0),
        }
        trials = [
            Trial("__fake", config={"mock_error": True}, **kwargs),
            Trial("__fake", **kwargs),
            Trial("__fake", **kwargs),
        ]
        for t in trials:
            runner.add_trial(t)

        while not runner.is_finished():
            runner.step()

        runner.checkpoint(force=True)

        assert trials[0].status == Trial.ERROR
        del runner

        new_runner = TrialRunner(
            resume="ERRORED_ONLY", local_checkpoint_dir=self.tmpdir
        )
        assert len(new_runner.get_trials()) == 3
        assert Trial.ERROR not in (t.status for t in new_runner.get_trials())
        # The below is just a check for standard behavior.
        disable_error = False
        for t in new_runner.get_trials():
            if t.config.get("mock_error"):
                t.config["mock_error"] = False
                disable_error = True
        assert disable_error

        while not new_runner.is_finished():
            new_runner.step()
        assert Trial.ERROR not in (t.status for t in new_runner.get_trials())