Exemple #1
0
    def test_rbf_interpolation(self):
        """Test interpolation conditions.

        Verify that the RBF interpolates at points.
        """
        settings = RbfoptSettings()
        for i in range(20):
            dim = np.random.randint(1, 20)
            num_points = np.random.randint(dim + 1, 50)
            node_pos = np.random.uniform(-100, 100, size=(num_points, dim))
            node_val = np.random.uniform(0, 100, num_points)
            # Possible shapes of the matrix
            for rbf_type in self.rbf_types:
                settings.rbf = rbf_type
                mat = ru.get_rbf_matrix(settings, dim, num_points, node_pos)
                rbf_l, rbf_h = ru.get_rbf_coefficients(settings, dim,
                                                       num_points, mat,
                                                       node_val)
                for i in range(num_points):
                    value = ru.evaluate_rbf(settings, node_pos[i], dim,
                                            num_points, node_pos, rbf_l, rbf_h)
                    self.assertAlmostEqual(value,
                                           node_val[i],
                                           places=3,
                                           msg='Interpolation failed' +
                                           'with rbf ' + rbf_type)
Exemple #2
0
    def test_minimize_rbf_random(self):
        """Check solution of RBF minimization problem on random instances.

        This function verifies that the solution of the RBF
        minimization problem on small random problems is always no
        worse than he best interpolation node.

        """
        for i in range(10):
            n = np.random.randint(4, 10)
            k = np.random.randint(n + 1, n + 10)
            var_lower = np.array([-5] * n)
            var_upper = np.array([5] * n)
            integer_vars = np.sort(np.random.choice(n, np.random.randint(n)))
            node_pos = np.random.uniform(-5, 5, size=(k, n))
            node_pos[:, integer_vars] = np.around(node_pos[:, integer_vars])
            node_val = np.random.uniform(-10, 10, size=k)
            best_node_pos = np.argmin(node_val)
            for rbf_type in self.rbf_types:
                settings = RbfoptSettings(rbf=rbf_type)
                A = ru.get_rbf_matrix(settings, n, k, node_pos)
                rbf_l, rbf_h = ru.get_rbf_coefficients(settings, n, k, A,
                                                       node_val)
                sol = aux.minimize_rbf(settings, n, k, var_lower, var_upper,
                                       integer_vars, None, node_pos, rbf_l,
                                       rbf_h, node_pos[best_node_pos])
                val = ru.evaluate_rbf(settings, sol, n, k, node_pos, rbf_l,
                                      rbf_h)
                self.assertLessEqual(val,
                                     node_val[best_node_pos] + 1.0e-3,
                                     msg='The minimize_rbf solution' +
                                     ' is worse than starting point' +
                                     ' with rbf ' + rbf_type)
def evaluateRBF(input):
    #Single input for parallel processing
    points, model = input

    # Write error message
    if len(points) == 0:
        sys.stdout.write("No points to evaluate!\n")
        sys.stdout.flush()

    # Number of nodes at current iterbfopt_algtion
    k = len(model.node_pos)

    # Compute indices of fast node evaluations (sparse format)
    fast_node_index = (np.nonzero(model.node_is_fast)[0]
                       if model.two_phase_optimization else np.array([]))

    # Rescale nodes if necessary
    tfv = rbfopt_utils.transform_function_values(model.l_settings,
                                                 np.array(model.node_val),
                                                 model.fmin, model.fmax,
                                                 fast_node_index)
    (scaled_node_val, scaled_fmin, scaled_fmax, node_err_bounds,
     rescale_function) = tfv

    # Compute the matrices necessary for the algorithm
    Amat = rbfopt_utils.get_rbf_matrix(model.l_settings, model.n, k,
                                       np.array(model.node_pos))

    # Get coefficients for the exact RBF
    rc = rbfopt_utils.get_rbf_coefficients(model.l_settings, model.n, k, Amat,
                                           scaled_node_val)
    if (fast_node_index):
        # RBF with some fast function evaluations
        rc = aux.get_noisy_rbf_coefficients(model.l_settings, model.n, k,
                                            Amat[:k, :k], Amat[:k, k:],
                                            scaled_node_val, fast_node_index,
                                            node_err_bounds, rc[0], rc[1])
    (rbf_l, rbf_h) = rc

    # Evaluate RBF
    if len(points) <= 1:
        values = []
        for point in points:
            values.append(
                rbfopt_util.evaluate_rbf(model.l_settings, point, model.n, k,
                                         np.array(model.node_pos), rbf_l,
                                         rbf_h))
        return values
    else:
        return rbfopt_utils.bulk_evaluate_rbf(model.l_settings,
                                              np.array(points), model.n, k,
                                              np.array(model.node_pos), rbf_l,
                                              rbf_h)
Exemple #4
0
 def test_get_model_quality_estimate(self):
     """Test the get_model_quality_estimate function.
     """
     for rbf in [
             'cubic', 'thin_plate_spline', 'multiquadric', 'linear',
             'gaussian'
     ]:
         settings = RbfoptSettings(rbf=rbf)
         error = ru.get_model_quality_estimate(settings, self.n, self.k,
                                               self.node_pos, self.node_val,
                                               self.k)
         # Create a copy of the interpolation nodes and values
         sorted_idx = self.node_val.argsort()
         sorted_node_val = self.node_val[sorted_idx]
         # Initialize the arrays used for the cross-validation
         cv_node_pos = self.node_pos[sorted_idx[1:]]
         cv_node_val = self.node_val[sorted_idx[1:]]
         # The node that was left out
         rm_node_pos = self.node_pos[sorted_idx[0]]
         rm_node_val = self.node_val[sorted_idx[0]]
         # Estimate of the model error
         loo_error = 0.0
         for i in range(self.k):
             # Compute the RBF interpolant with one node left out
             Amat = ru.get_rbf_matrix(settings, self.n, self.k - 1,
                                      cv_node_pos)
             rbf_l, rbf_h = ru.get_rbf_coefficients(settings, self.n,
                                                    self.k - 1, Amat,
                                                    cv_node_val)
             # Compute value of the interpolant at the removed node
             predicted_val = ru.evaluate_rbf(settings, rm_node_pos, self.n,
                                             self.k - 1, cv_node_pos, rbf_l,
                                             rbf_h)
             # Update leave-one-out error
             loc = np.searchsorted(sorted_node_val, predicted_val)
             loo_error += abs(loc - i)
             # Update the node left out
             if (i < self.k - 1):
                 tmp = cv_node_pos[i].copy()
                 cv_node_pos[i] = rm_node_pos
                 rm_node_pos = tmp
                 cv_node_val[i], rm_node_val = rm_node_val, cv_node_val[i]
         self.assertAlmostEqual(loo_error,
                                error,
                                msg='Model selection procedure ' +
                                'miscomputed the error')
Exemple #5
0
    def test_rbf_interpolation_cat(self):
        """Test interpolation conditions with categorical variables.

        Verify that the RBF interpolates at points.
        """
        settings = RbfoptSettings()
        for i in range(20):
            dim = np.random.randint(5, 15)
            cat_dim = 8
            # We need enough points to ensure the system is not singular
            num_points = np.random.randint(2 * (dim + cat_dim), 60)
            node_pos = np.hstack((np.random.uniform(-100,
                                                    100,
                                                    size=(num_points, dim)),
                                  np.zeros(shape=(num_points, cat_dim))))
            # Pick random categorical values
            for j in range(num_points):
                node_pos[j, dim + np.random.choice(4)] = 1
                node_pos[j, dim + 4 + np.random.choice(4)] = 1
            categorical_info = (np.array([0, 1]),
                                np.array([j + 2 for j in range(dim)]),
                                [(0, 0, np.array([dim + j for j in range(4)])),
                                 (1, 0,
                                  np.array([dim + 4 + j for j in range(4)]))])
            node_val = np.random.uniform(0, 100, num_points)
            # Possible shapes of the matrix
            for rbf_type in self.rbf_types:
                settings.rbf = rbf_type
                mat = ru.get_rbf_matrix(settings, dim + cat_dim, num_points,
                                        node_pos)
                rbf_l, rbf_h = ru.get_rbf_coefficients(settings, dim + cat_dim,
                                                       num_points, mat,
                                                       node_val,
                                                       categorical_info)
                for i in range(num_points):
                    value = ru.evaluate_rbf(settings, node_pos[i],
                                            dim + cat_dim, num_points,
                                            node_pos, rbf_l, rbf_h)
                    self.assertAlmostEqual(value,
                                           node_val[i],
                                           places=4,
                                           msg='Interpolation failed ' +
                                           'with rbf ' + rbf_type)
Exemple #6
0
 def test_get_model_quality_estimate(self):
     """Test the get_model_quality_estimate function.
     """
     for rbf in ['cubic', 'thin_plate_spline', 'multiquadric',
                 'linear', 'gaussian']:
         settings = RbfoptSettings(rbf=rbf)
         error = ru.get_model_quality_estimate(
             settings, self.n, self.k, self.node_pos, 
             self.node_val, self.k)
         # Create a copy of the interpolation nodes and values
         sorted_idx = self.node_val.argsort()
         sorted_node_val = self.node_val[sorted_idx]
         # Initialize the arrays used for the cross-validation
         cv_node_pos = self.node_pos[sorted_idx[1:]]
         cv_node_val = self.node_val[sorted_idx[1:]]            
         # The node that was left out
         rm_node_pos = self.node_pos[sorted_idx[0]]
         rm_node_val = self.node_val[sorted_idx[0]]
         # Estimate of the model error
         loo_error = 0.0    
         for i in range(self.k):
             # Compute the RBF interpolant with one node left out
             Amat = ru.get_rbf_matrix(settings, self.n, self.k-1, 
                                      cv_node_pos)
             rbf_l, rbf_h = ru.get_rbf_coefficients(
                 settings, self.n, self.k-1, Amat, cv_node_val)
             # Compute value of the interpolant at the removed node
             predicted_val = ru.evaluate_rbf(settings, rm_node_pos, 
                                             self.n, self.k-1, 
                                             cv_node_pos, rbf_l, rbf_h)
             # Update leave-one-out error
             loc = np.searchsorted(sorted_node_val, predicted_val)
             loo_error += abs(loc - i)
             # Update the node left out
             if (i < self.k - 1):
                 tmp = cv_node_pos[i].copy()
                 cv_node_pos[i] = rm_node_pos
                 rm_node_pos = tmp
                 cv_node_val[i], rm_node_val = rm_node_val, cv_node_val[i]
         self.assertAlmostEqual(loo_error, error, 
                                msg='Model selection procedure ' +
                                'miscomputed the error')
Exemple #7
0
    def test_rbf_interpolation(self):
        """Test interpolation conditions.

        Verify that the RBF interpolates at points.
        """
        settings = RbfoptSettings()
        for i in range(20):
            dim = np.random.randint(1, 20)
            num_points = np.random.randint(10, 50)
            node_pos = np.random.uniform(-100, 100, size=(num_points,dim))
            node_val = np.random.uniform(0, 100, num_points)
            # Possible shapes of the matrix
            for rbf_type in self.rbf_types:
                settings.rbf = rbf_type
                mat = ru.get_rbf_matrix(settings, dim, num_points, node_pos)
                rbf_l, rbf_h = ru.get_rbf_coefficients(
                    settings, dim, num_points, mat, node_val)
                for i in range(num_points):
                    value = ru.evaluate_rbf(settings, node_pos[i], dim,
                                            num_points, node_pos, rbf_l, rbf_h)
                    self.assertAlmostEqual(value, node_val[i], places=4,
                                           msg='Interpolation failed' +
                                           'with rbf ' + rbf_type)