class TestConnection(unittest.TestCase): def test_mysql(self): self.connection = DBConnection(TEST_DB['user'], TEST_DB['pass'], TEST_DB['host'], TEST_DB['database'], vendor=TEST_DB['vendor']) try: self.connection.check_connection() connection_success = True except: connection_success = False self.assertTrue(connection_success) def test_pgsql(self): self.connection = DBConnection(TEST_DB_POSTGRES['user'], TEST_DB_POSTGRES['pass'], TEST_DB_POSTGRES['host'], TEST_DB_POSTGRES['database'], vendor=TEST_DB_POSTGRES['vendor']) try: self.connection.check_connection() connection_success = True except: connection_success = False self.assertTrue(connection_success)
class TestConnection(unittest.TestCase): def test_mysql(self): self.connection = DBConnection( TEST_DB['user'], TEST_DB['pass'], TEST_DB['host'], TEST_DB['database'], vendor=TEST_DB['vendor'] ) try: self.connection.check_connection() connection_success = True except: connection_success = False self.assertTrue(connection_success) def test_pgsql(self): self.connection = DBConnection( TEST_DB_POSTGRES['user'], TEST_DB_POSTGRES['pass'], TEST_DB_POSTGRES['host'], TEST_DB_POSTGRES['database'], vendor=TEST_DB_POSTGRES['vendor'] ) try: self.connection.check_connection() connection_success = True except: connection_success = False self.assertTrue(connection_success)
def setUp(self): self.connection = DBConnection(TEST_DB['user'], TEST_DB['pass'], TEST_DB['host'], TEST_DB['database'], vendor=TEST_DB['vendor']) self.connection_pg = DBConnection(TEST_DB_POSTGRES['user'], TEST_DB_POSTGRES['pass'], TEST_DB_POSTGRES['host'], TEST_DB_POSTGRES['database'], vendor=TEST_DB_POSTGRES['vendor'])
def test_mysql(self): self.connection = DBConnection(TEST_DB['user'], TEST_DB['pass'], TEST_DB['host'], TEST_DB['database'], vendor=TEST_DB['vendor']) try: self.connection.check_connection() connection_success = True except: connection_success = False self.assertTrue(connection_success)
def setUp(self): # MySQL test db self.connection = DBConnection(TEST_DB['user'], TEST_DB['pass'], TEST_DB['host'], TEST_DB['database'], vendor=TEST_DB['vendor']) self.context = DBContext(self.connection, target_table='trains', target_att='direction') # Postgres test db self.connection_pg = DBConnection(TEST_DB_POSTGRES['user'], TEST_DB_POSTGRES['pass'], TEST_DB_POSTGRES['host'], TEST_DB_POSTGRES['database'], vendor=TEST_DB_POSTGRES['vendor']) self.context_pg = DBContext(self.connection_pg) self.context_pg.target_table = 'urbanblock' self.context_pg.target_att = 'class'
def test_mysql(self): self.connection = DBConnection( TEST_DB['user'], TEST_DB['pass'], TEST_DB['host'], TEST_DB['database'], vendor=TEST_DB['vendor'] ) try: self.connection.check_connection() connection_success = True except: connection_success = False self.assertTrue(connection_success)
from rdm.db import DBVendor, DBConnection, DBContext, AlephConverter from rdm.wrappers import Aleph # Provide connection information connection = DBConnection( 'ilp', # User 'ilp123', # Password 'workflow.ijs.si', # Host 'ilp', # Database ) # Define learning context context = DBContext(connection, target_table='trains', target_att='direction') # Convert the data and induce features using Aleph conv = AlephConverter(context, target_att_val='east') aleph = Aleph() theory, features = aleph.induce('induce_features', conv.positive_examples(), conv.negative_examples(), conv.background_knowledge()) print(theory)
import sys reload(sys) # Reload does the trick! sys.setdefaultencoding('UTF8') import orange from rdm.db import DBVendor, DBConnection, DBContext, RSDConverter, mapper from rdm.wrappers import RSD from rdm.validation import cv_split from rdm.helpers import arff_to_orange_table # Provide connection information connection = DBConnection( 'ilp', # User 'ilp123', # Password 'workflow.ijs.si', # Host 'imdb_top', # Database vendor=DBVendor.MySQL) # Define learning context context = DBContext(connection, target_table='movies', target_att='quality') # Cross-validation loop predictions = [] folds = 10 for train_context, test_context in cv_split(context, folds=folds, random_seed=0): # Find features on the train set conv = RSDConverter(train_context) rsd = RSD()
algorithm = "nrelaggs" #hyperparameters predictor_layers = [(100, ), (50, ), (100, 50)] loss = 'hinge' feature_generation = [1., 0.5, 0.75] feature_selection = [1., 0.5, 0.75] #for propStar/propDRM learning_rates = [0.001, 0.01, 0.0001] num_featuress = [10000, 30000, 50000] hidden_sizes = [8, 16, 32] connection = DBConnection( 'guest', # User 'relational', # Password 'relational.fit.cvut.cz', # Host dataset, # Database vendor=DBVendor.MySQL) context = DBContext(connection, target_table=target_table, target_att=target_label) #Sql-File for propStar/propDRM sql_file = "Data/trains/trains.sql" if algorithm in ["aleph", "rsd", "treeliker", "wordification", "relaggs"]: transform(algorithm, context, target_attr_value, seed=1,