print('\n*Completed: Finished readCTLQ function!')
    return lat, lon, time, lev, var


### Call functions for variable profile data for polar cap
lat, lon, time, lev, tashit = DO.readMeanExperiAll('%s' % varnames, 'HIT',
                                                   'profile')
lat, lon, time, lev, tasfit = DO.readMeanExperiAll('%s' % varnames, 'FIT',
                                                   'profile')
lat, lon, time, lev, tasfict = DO.readMeanExperiAll('%s' % varnames, 'FICT',
                                                    'profile')
lat, lon, time, lev, tasfic = DO.readMeanExperiAll('%s' % varnames, 'FIC',
                                                   'profile')
lat, lon, time, lev, tascit = DO.readMeanExperiAll('%s' % varnames, 'CIT',
                                                   'profile')
lat, lon, time, lev, tasfsub = DOR.readMeanExperiAllRegional(
    '%s' % varnames, 'FSUB', 'profile')
lat, lon, time, lev, tasfpol = DOR.readMeanExperiAllRegional(
    '%s' % varnames, 'FPOL', 'profile')
lat, lon, time, lev, tasctlq = readCTLQ('%s' % varnames, 'CTLQ', 'profile')

### Create 2d array of latitude and longitude
lon2, lat2 = np.meshgrid(lon, lat)

### Read in QBO phases
filenamehitp = directorydata + 'HIT/monthly/QBO_%s_HIT.txt' % qbophase[0]
filenamehitn = directorydata + 'HIT/monthly/QBO_%s_HIT.txt' % qbophase[2]
filenamehitp2 = directorydata2 + 'HIT/monthly/QBO_%s_HIT.txt' % qbophase[0]
filenamehitn2 = directorydata2 + 'HIT/monthly/QBO_%s_HIT.txt' % qbophase[2]
pos_hit = np.append(
    np.genfromtxt(filenamehitp, unpack=True, usecols=[0], dtype='int'),
    np.genfromtxt(filenamehitp2, unpack=True, usecols=[0], dtype='int') + 100)
Exemple #2
0
### Add parameters
MASK = True
varnames = ['T1000']
runnames = [r'CIT', r'FSUB', r'FPOL']
qbophase = ['pos', 'non', 'neg']
experiments = [
    r'\textbf{FSUB--CIT}', r'\textbf{FSUB--CIT}', r'\textbf{FSUB-CIT}',
    r'\textbf{FPOL--CIT}', r'\textbf{FPOL--CIT}', r'\textbf{FPOL--CIT}'
]

### Call functions for variable profile data for polar cap
for v in range(len(varnames)):
    lat, lon, time, lev, varcit = DO.readMeanExperiAll('%s' % varnames[v],
                                                       'CIT', 'surface')
    lat, lon, time, lev, varfsub = DOR.readMeanExperiAllRegional(
        '%s' % varnames[v], 'FSUB', 'surface')
    lat, lon, time, lev, varfpol = DOR.readMeanExperiAllRegional(
        '%s' % varnames[v], 'FPOL', 'surface')

    ### Create 2d array of latitude and longitude
    lon2, lat2 = np.meshgrid(lon, lat)

    ### Read in QBO phases
    filenamecitp = directorydata + 'CIT/monthly/QBO_%s_CIT.txt' % qbophase[0]
    filenamecitno = directorydata + 'CIT/monthly/QBO_%s_CIT.txt' % qbophase[1]
    filenamecitn = directorydata + 'CIT/monthly/QBO_%s_CIT.txt' % qbophase[2]
    filenamecitp2 = directorydata2 + 'CIT/monthly/QBO_%s_CIT.txt' % qbophase[0]
    filenamecitno2 = directorydata2 + 'CIT/monthly/QBO_%s_CIT.txt' % qbophase[1]
    filenamecitn2 = directorydata2 + 'CIT/monthly/QBO_%s_CIT.txt' % qbophase[2]
    pos_cit = np.append(
        np.genfromtxt(filenamecitp, unpack=True, usecols=[0], dtype='int'),