# plt.suptitle(file + '(' + meta[file[0:-4]]['appliance']['type'] + '-' + # meta[file[0:-4]]['appliance']['status'] + ')') # plt.savefig('model/knowledge_model_temp/jpg/total/' + file[0:-4] + '.jpg', # dpi=600) # plt.close() # print('dealing...:%03d/%03d' % (count, total_len)) for file, start_point in start_index.items(): plt.figure(figsize=(8, 6)) plt.cla() count += 1 file_dir = source_dir + file Voltage, Current = read_source_data(file_dir, offset=start_point, length=length1) Stable_V, Stable_I = read_source_data(file_dir, offset=start_point + 3000, length=length2) tem = np.array(Current) - np.array(Stable_I) ax1 = plt.subplot(411) plt.plot(t1, Voltage) plt.grid(alpha=0.5, linestyle='-.') plt.title('Voltage') plt.xticks([]) ax2 = plt.subplot(412) plt.plot(t1, Current) plt.grid(alpha=0.5, linestyle='-.')
import sys import os import numpy as np sys.path.append('data/') from read_PLAID_data import read_source_data, read_index source_dir = 'data/source/submetered_new_pured/source/' type_index = read_index('type') skip_list = type_index['Compact Fluorescent Lamp'] + type_index['Laptop'] csv_dir = os.listdir(source_dir) record = {} for file in csv_dir: if int(file[0:-4]) in skip_list: continue file_dir = source_dir + file Switch_V, Switch_I = read_source_data(file_dir, offset=0, length=1500) Total_V, Total_I = read_source_data(file_dir, offset=0) I_max = np.max(abs(Switch_I)) # slide_arr = np.zeros(10) value0 = 0 # Threshold = np.sum(slide_arr) / len(slide_arr) Threshold = 0.01256 * I_max # diff = 0 slide_width = 10 for i, value in enumerate(Total_I): if i == 0: value0 = value continue if abs(value - value0) > 10 * Threshold:
from pyhht.visualization import plot_imfs import matplotlib.pyplot as plt sys.path.append('data/') from read_PLAID_data import read_source_data source_dir = 'data/source/submetered_new_pured/source/' with open( '/home/chaofan/powerknowledge/data/source/metadata_submetered2.1.json', 'r', encoding='utf8') as load_meta: meta = json.load(load_meta) length1 = 3000 length2 = 3000 t = range(3000) csv_dir = os.listdir(source_dir) for file in csv_dir: file_dir = source_dir + file Switch_V, Switch_I = read_source_data(file_dir, offset=0, length=length1) Stable_V, Stable_I = read_source_data(file_dir, offset=3000, length=length2) tem = np.array(Switch_I) - np.array(Stable_I) decomposer = EMD(tem, n_imfs=3) imfs = decomposer.decompose() plot_imfs(tem, imfs, t)
import os sys.path.append('data/') from read_PLAID_data import read_source_data, slider_plot source_dir = 'data/source/submetered_new/' file_list = os.listdir(source_dir) # with open('model/find_result.txt', 'r') as f: # file_list = [] # for line in f.readlines(): # line = line.strip('\n') # line = line.split(':') # file = line[0][1:-1] # if '.csv' in file: # file_list.append(file) file_dir = source_dir + '1.csv' Switch_V, Switch_I = read_source_data(file_dir) slider_plot(Switch_I) # with open( # '/home/chaofan/powerknowledge/data/source/metadata_submetered2.1.json', # 'r', # encoding='utf8') as load_meta: # meta = json.load(load_meta) # count = 0 # for i, file in enumerate(file_list): # file_dir = source_dir + file # Switch_V, Switch_I = read_source_data(file_dir) # print(file + '(' + meta[file[0:-4]]['appliance']['type'] + '-' + # meta[file[0:-4]]['appliance']['status'] + ')') # slider_plot(Switch_I)