def train(filename,seq_length,num_epochs,learning_rate, input_size,hidden_size,num_layers,num_classes,bidirectional,PATH): ''' Function to train and save the model for prediction. Args: filename: name of the data set. seq_length: the number of pass input points which needed for predicting the future value. num_epochs: number of times all the data has passed to the model. learning_rate: step size at each iteration while moving toward a minimum of a loss function input_size: number of input features. hidden_size: number of hidden layer. num_classes: number of outputs. bidirectional: True or False. PATH: name of the save model *.pt (pytorch model) Returns: lstm: A train lstm models with the structure define as input. ''' dataX, dataY, trainX, trainY, testX, testY = data_preprocess(filename,seq_length) lstm = LSTM(num_classes, input_size, hidden_size, num_layers,bidirectional,seq_length) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) #optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) # Train the model for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) # Save the model for prediction. #PATH = PATH torch.save(lstm.state_dict(), PATH) return lstm
def main(): #filename = 'Heavy_weight.txt' #Dettached_M_weight filename = 'Light_weight.txt' seq_length = 12 # Prepare the data. dataX, dataY, trainX, trainY, testX, testY = data_preprocess( filename, seq_length) input_size = 6 hidden_size = 20 num_layers = 1 num_classes = 1 bidirectional = True # name of the save model PATH = "heat_demand.pt" # uncomment lines below to re-train the model #num_epochs = 2000 # learning rate #learning_rate = 0.01 #train(filename,seq_length,num_epochs,learning_rate, # input_size,hidden_size,num_layers,num_classes,bidirectional,PATH) # call prediction function. data_predict = predict(testX, seq_length, input_size, hidden_size, num_layers, num_classes, bidirectional, PATH) dataY_plot = testY.data.numpy() sc_Y = load('sc_Y.bin') data_predict = sc_Y.inverse_transform(data_predict) data_predict[data_predict < 0] = 0 dataY_plot = sc_Y.inverse_transform(dataY_plot) # plot the results fig, axs = plt.subplots(2, figsize=(20, 12)) axs[0].plot(dataY_plot[:, 0], label='measured') axs[0].plot(data_predict[:, 0], label='predict') axs[1].plot(dataY_plot[:, 0], label='measured') axs[1].plot(data_predict[:, 0], label='predict') axs[0].title.set_text('Zoom_in') axs[1].title.set_text('Heat demand') axs[0].set_xlim([1500, 2000]) #axs[1].set_xlim([500,1000]) axs[0].legend() axs[1].legend() plt.show()
def main(): ''' An example for running the prediction with an assumption that Q_solar and internal heat gain for the next hour are not known, all the pass values are known and will be used as input for the next predicted hour. ''' #filename = 'Heavy_weight.txt' filename = 'Light_weight.txt' seq_length = 12 # Prepare the data. dataX, dataY, trainX, trainY, testX, testY = data_preprocess( filename, seq_length) Xtsq = testX.clone().detach() # Construct a predicted uncertainties array and add to the predicted set # Assume that Solar and internal heat gain are variables with uncertainties. #tempset = Variable(torch.Tensor(np.zeros([Xtsq.shape[0],Xtsq.shape[1],2]))) tempset = Variable(torch.Tensor(np.array([[0, 0]]))) # Replace Solar and internal heat gain with zero # (only replace the last values of the sequences) #Xtsq[:,:,3:5]= tempset Xtsq[:, -1, 3:5] = tempset #Define and load the model. input_size = 6 hidden_size = 20 num_layers = 1 num_classes = 1 bidirectional = True # name of the save model PATH = "heat_demand.pt" # load the model. model = LSTM(num_classes, input_size, hidden_size, num_layers, bidirectional, seq_length) model.load_state_dict(torch.load(PATH)) # call prediction function predict_test = model(Xtsq) predict_data = predict_test.data.numpy() # Transform the data to its original form. sc_Y = load('sc_Y.bin') predict = sc_Y.inverse_transform(predict_data) predict[predict < 0] = 0 Y_val = testY.data.numpy() Y_val_plot = sc_Y.inverse_transform(Y_val) # Plot the results fig, axs = plt.subplots(2, figsize=(20, 12)) axs[0].plot(Y_val_plot, label='measured') axs[0].plot(predict, label='predicted') axs[1].plot(Y_val_plot, label='measured') axs[1].plot(predict, label='predicted') axs[0].title.set_text('Zoom_in') axs[1].title.set_text('Heat demand') #plt.figure(figsize=(17,6)) #plotting axs[0].set_xlim([0, 2000]) #axs[1].set_xlim([500,1000]) #plt.xlim([0,0]) #plt.plot(dataY_plot[:,0],label='measured') #plt.plot(data_predict[:,0],label = 'predict') #plt.suptitle('Heat-Demand Prediction') axs[0].legend() axs[1].legend() plt.show()
#dataX, dataY, trainX, trainY, testX, testY = data_preprocess(filename,seq_length) train_predict = model(pred_input) data_predict = train_predict.data.numpy() return data_predict if __name__ == "__main__": #filename = 'Heavy_weight.txt' filename = 'Light_weight.txt' seq_length = 12 # Prepare the data. dataX, dataY, trainX, trainY, testX, testY = data_preprocess( filename, seq_length) # model parameters input_size = 6 hidden_size = 20 num_layers = 1 num_classes = 1 bidirectional = True PATH = "heat_demand.pt" # prediction and transform the data back to it original form data_predict = predict(testX, seq_length, input_size, hidden_size, num_layers, num_classes, bidirectional, PATH) dataY_plot = testY.data.numpy()
def main(): ''' An example for running the prediction with an assumption that Q_solar and internal heat gain are not known. The model will predict several hours ahead of time. ''' #filename = 'Heavy_weight.txt' filename = 'Light_weight.txt' seq_length = 12 # Prepare the data. dataX, dataY, trainX, trainY, testX, testY = data_preprocess( filename, seq_length) #Define and load the model. input_size = 6 hidden_size = 20 num_layers = 1 num_classes = 1 bidirectional = True # name of the saved model PATH = "heat_demand.pt" # load the model. model = LSTM(num_classes, input_size, hidden_size, num_layers, bidirectional, seq_length) model.load_state_dict(torch.load(PATH)) Xtsq = testX.clone().detach() # Construct a predicted uncertainties array and add to the predicted set # Assume that Solar and internal heat gain are variables with uncertainties. tempset = Variable( torch.Tensor(np.zeros([Xtsq.shape[0], Xtsq.shape[1], 2]))) #tempset = Variable(torch.Tensor(np.array([[0,0]]))) # Replace Solar and internal heat gain with zero # (only replace the last values of the sequences) Xtsq[:, :, 3:5] = tempset #Xtsq[:,-1,3:5]= tempset predict = np.array([]) pred_hour = 24 * 50 for i in range(pred_hour): # Select a subset of 12 hour data from the test set indices = torch.tensor([i]) subtestX = torch.index_select(Xtsq, 0, indices) # predict the next hour temp = model(subtestX) # Replace the next hour value in the set with a predicted value # for predicting the next time step Xtsq[i + 1, -1, 0] = temp # Add all prediction value together. temp = temp.detach().numpy() predict = np.append(predict, temp) # Transform the data to its original form. sc_Y = load('sc_Y.bin') predict = sc_Y.inverse_transform(predict) predict[predict < 0] = 0 Y_val = testY.data.numpy() Y_val_plot = sc_Y.inverse_transform(Y_val) # Plot the results fig, axs = plt.subplots(2, figsize=(20, 12)) axs[0].plot(Y_val_plot, label='measured') axs[0].plot(predict, label='predicted') axs[1].plot(Y_val_plot, label='measured') axs[1].plot(predict, label='predicted') axs[0].title.set_text('Zoom_in') axs[1].title.set_text('Heat demand') axs[0].set_xlim([0, pred_hour]) axs[1].set_xlim([0, pred_hour]) axs[0].legend() axs[1].legend() plt.show()