def __init__(self): reader = DataReader(187, 6) self.x_train, self.y_train = reader.read_train_human('./train/') self.x_test, self.y_test = reader.read_test_human("./test/") self.x_input, self.y_input = reader.temp_read_test_human("./test/")
from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import rnn, rnn_cell import pandas as pd import numpy as np import sys sys.path.append("../script") from convert_input import Convert from validation import Validation from read_data import DataReader reader = DataReader(1,6) x_train, y_train = reader.read_train_human('../human/train/') x_test, y_test = reader.read_test_human("../human/test/") x_input, y_input = reader.temp_read_test_human("../human/test/") x_train = np.transpose(x_train, [1,0,2]) x_test = np.transpose(x_test, [1,0,2]) ''' To classify images using a recurrent neural network, we consider every image row as a sequence of pixels. Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample. ''' # Parameters