Exemple #1
0
def main():

    studydir = '/ImagePTE1/ajoshi/fitbir/preproc/maryland_rao_v1'

    epi_txt = '/ImagePTE1/ajoshi/fitbir/preproc/maryland_rao_v1_epilepsy_imgs.txt'
    nonepi_txt = '/ImagePTE1/ajoshi/fitbir/preproc/maryland_rao_v1_nonepilepsy_imgs_37.txt'

    with open(epi_txt) as f:
        epiIds = f.readlines()

    with open(nonepi_txt) as f:
        nonepiIds = f.readlines()

    epiIds = list(map(lambda x: x.strip(), epiIds))
    nonepiIds = list(map(lambda x: x.strip(), nonepiIds))

    epi_files = list()
    nonepi_files = list()

    for sub in epiIds:
        fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
                             sub + '_rest_bold.32k.GOrd.mat')
        if os.path.isfile(fname):
            epi_files.append(fname)

    for sub in nonepiIds:
        fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
                             sub + '_rest_bold.32k.GOrd.mat')
        if os.path.isfile(fname):
            nonepi_files.append(fname)

    epi_data = load_bfp_data(epi_files, 171)
    nonepi_data = load_bfp_data(nonepi_files, 171)

    t = time.time()
    X2, Os, Costdif, TotalError = groupBrainSync(nonepi_data)

    elapsed = time.time() - t

    np.savez('grp_atlas2.npz', X2=X2, Os=Os)

    atlas_data, _, _ = normalizeData(np.mean(X2, axis=1))

    np.savez('grp_atlas.npz', atlas_data=atlas_data)

    # Do Pointwise stats
    #    pointwise_stats(epi_data, nonepi_data)

    vis_grayord_sigcorr(pval, rval, cf.outname, cf.out_dir,
                        int(cf.smooth_iter), cf.save_surfaces, cf.save_figures,
                        'True')

    print('done')
Exemple #2
0
pbar = tqdm(total=len(subj))
for i in range(len(subj)):
    print(str(n))
    n = n + 1
    fname = os.path.join(dirname, subj[i], 'func', subj[i] + ext)
    if os.path.isfile(fname):
        df = spio.loadmat(fname)
        data = df['dtseries'].T
        if int(data.shape[0]) == LenTime:
            sub_ID.append(subj[i])
            sub_fname.append(fname)
    pbar.update(1)
np.savetxt(out_dir + "/subjects.csv", sub_ID, delimiter=",", fmt='%s')
write_text_timestamp(
    flog, 'data for ' + str(len(sub_ID)) +
    ' subjects will be used for atlas creation')
sub_data = load_bfp_data(sub_fname, LenTime)
#%% run group sync
groupatlas_data, _, _, _ = groupBrainSync(sub_data)
spio.savemat(os.path.join(out_dir + '/group_atlas.mat'),
             {'groupatlas_data': groupatlas_data})
write_text_timestamp(flog, 'completed group sync')
#%% find representative subject
subRef_data, q = IDrefsub_BrainSync(sub_data)
write_text_timestamp(flog, 'representative subject is ' + str(sub_ID[q]))
#%% sync group atlas to representative subject
atlas_data, _ = brainSync(subRef_data, groupatlas_data)
spio.savemat(os.path.join(out_dir + '/atlas.mat'), {'atlas_data': atlas_data})
write_text_timestamp(
    flog,
    'group atlas synced to representative subject. group-MDS_atlas done.')
Exemple #3
0
def load_all_data(studydir, epi_txt, test_epi_txt, nonepi_txt, test_nonepi_txt,
                  atlas_labels):

    atlas = spio.loadmat(atlas_labels)

    gord_labels = atlas['labels'].squeeze()

    label_ids = np.unique(gord_labels)  # unique label ids

    # remove WM label from connectivity analysis
    label_ids = np.setdiff1d(label_ids, (2000, 0))

    with open(epi_txt) as f:
        epiIds = f.readlines()

    with open(nonepi_txt) as f:
        nonepiIds = f.readlines()

    epiIds = list(map(lambda x: x.strip(), epiIds))
    nonepiIds = list(map(lambda x: x.strip(), nonepiIds))
    # random.shuffle(epiIds)
    # random.shuffle(nonepiIds)
    # print(len(epiIds), epiIds)
    epi_files = list()
    nonepi_files = list()

    for sub in epiIds:
        fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
                             sub + '_rest_bold.32k.GOrd.mat')
        if os.path.isfile(fname):
            epi_files.append(fname)

    for sub in nonepiIds:
        fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
                             sub + '_rest_bold.32k.GOrd.mat')
        if os.path.isfile(fname):
            nonepi_files.append(fname)

    epi_data = load_bfp_data(epi_files, 171)
    nonepi_data = load_bfp_data(nonepi_files, 171)

    # nsub = epi_data.shape[2]
    #==============================================================
    nsub = min(epi_data.shape[2], nonepi_data.shape[2])
    epiIds = epiIds[:nsub]
    nonepiIds = nonepiIds[:nsub]
    #===============================================================

    conn_mat = np.zeros((nsub * aug_times, len(label_ids), len(label_ids)))
    parcorr_mat = np.zeros((nsub * aug_times, len(label_ids), len(label_ids)))
    cent_mat = np.zeros((nsub * aug_times, len(label_ids)))
    input_feat = np.zeros(
        (nsub * aug_times, len(label_ids), epi_data.shape[0]))
    print(conn_mat.shape, input_feat.shape)
    print(epi_data.shape, nonepi_data.shape, gord_labels.shape)

    _, _, ref_sub = get_connectivity(nonepi_data[:, :, 0],
                                     labels=gord_labels,
                                     label_ids=label_ids)

    for subno in range(nsub):  # num of subjects
        conn_mat[subno:subno+aug_times, :, :], parcorr_mat[subno:subno+aug_times, :, :], \
        time_series = get_connectivity(epi_data[:, :, subno],
                                                 labels=gord_labels,
                                                 label_ids=label_ids)
        #G = nx.convert_matrix.from_numpy_array(np.abs(conn_mat[subno, :, :]))
        #cent = nx.eigenvector_centrality(G, weight='weight')
        #cent_mat[subno, :] = np.array(list(cent.items()))[:,1]
        # print(ref_sub.shape, time_series.shape)
        # input_feat[subno, :, :, :] = np.transpose(brainSync(ref_sub.T, time_series.T)[0])
        # input_feat[subno, :, :, :] = time_series

    np.savez(
        '../PTE_parPearson_BCI-DNI_aug10.npz',
        conn_mat=conn_mat,
        partial_mat=parcorr_mat,
        features=input_feat,  # 36x16x171
        label_ids=label_ids,
        cent_mat=cent_mat)
    ##============================================================================
    print("non_epi")
    # nsub = nonepi_data.shape[2]

    conn_mat = np.zeros((nsub * aug_times, len(label_ids), len(label_ids)))
    parcorr_mat = np.zeros((nsub * aug_times, len(label_ids), len(label_ids)))
    cent_mat = np.zeros((nsub * aug_times, len(label_ids)))
    input_feat = np.zeros(
        (nsub * aug_times, len(label_ids), epi_data.shape[0]))
    print(conn_mat.shape, input_feat.shape)
    # here we are using same number of training subjects for epi and nonepi.
    for subno in range(nsub):
        conn_mat[subno:subno+aug_times, :, :], parcorr_mat[subno:subno+aug_times, :, :], \
        time_series = get_connectivity(nonepi_data[:, :, subno],
                                                 labels=gord_labels,
                                                 label_ids=label_ids)
        #G = nx.convert_matrix.from_numpy_array(np.abs(conn_mat[subno, :, :]))
        #cent = nx.eigenvector_centrality(G, weight='weight')
    # cent_mat[subno, :] = np.array(list(cent.items()))[:,1]
    #  input_feat[subno, :, :] = np.transpose(brainSync(ref_sub.T, time_series.T)[0])

    #We are not using time series directly as input features, so the input feature here is just zeros.
    np.savez(
        '../NONPTE_parPearson_BCI-DNI_aug10.npz',
        conn_mat=conn_mat,  # n_subjects*16*16
        partial_mat=parcorr_mat,
        features=input_feat,  # n_subjects * 16 x 171
        label_ids=label_ids,
        cent_mat=cent_mat)

    print('done')
Exemple #4
0
def main():

    studydir = '/ImagePTE1/ajoshi/fitbir/preproc/maryland_rao_v1'

    epi_txt = '/ImagePTE1/ajoshi/fitbir/preproc/maryland_rao_v1_epilepsy_imgs.txt'
    nonepi_txt = '/ImagePTE1/ajoshi/fitbir/preproc/maryland_rao_v1_nonepilepsy_imgs_37.txt'

    atlas_labels = '/ImagePTE1/ajoshi/code_farm/bfp/supp_data/BCI-DNI_brain_grayordinate_labels.mat'
    atlas = spio.loadmat(atlas_labels)

    gord_labels = atlas['labels'].squeeze()

    label_ids = np.unique(gord_labels)  # unique label ids
    #label_ids = [301, 300, 401, 400, 101, 100, 201, 200, 501, 500, 900]
    '''
    label_ids = [3, 100, 101, 184, 185, 200, 201, 300,
                 301, 400, 401, 500, 501, 800, 850, 900]
    '''
    #label_ids=[301, 300, 401, 400, 101, 100, 201, 200, 501, 500, 900]
    # remove WM label from connectivity analysis
    label_ids = np.setdiff1d(label_ids, (2000, 0))

    with open(epi_txt) as f:
        epiIds = f.readlines()

    with open(nonepi_txt) as f:
        nonepiIds = f.readlines()

    epiIds = list(map(lambda x: x.strip(), epiIds))
    nonepiIds = list(map(lambda x: x.strip(), nonepiIds))

    epi_files = list()
    nonepi_files = list()
    epi_ids = list()
    nonepi_ids = list()

    for sub in epiIds:
        fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
                             sub + '_rest_bold.32k.GOrd.mat')
        if os.path.isfile(fname):
            epi_files.append(fname)
            epi_ids.append(sub)
        else:
            print('File does not exist: %s' % fname)

    for sub in nonepiIds:
        fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
                             sub + '_rest_bold.32k.GOrd.mat')
        if os.path.isfile(fname):
            nonepi_files.append(fname)
            nonepi_ids.append(sub)
        else:
            print('File does not exist: %s' % fname)

    epi_data = load_bfp_data(epi_files, 171)
    nonepi_data = load_bfp_data(nonepi_files, 171)

    nsub = min(epi_data.shape[2], nonepi_data.shape[2])
    epi_ids = epi_ids[:nsub]
    nonepi_ids = nonepi_ids[:nsub]
    conn_mat = np.zeros((len(label_ids), len(label_ids), nsub))
    cent_mat = np.zeros((len(label_ids), nsub))

    for subno in range(nsub):
        conn_mat[:, :, subno] = get_connectivity(epi_data[:, :, subno],
                                                 labels=gord_labels,
                                                 label_ids=label_ids)

        G = nx.convert_matrix.from_numpy_array(np.abs(conn_mat[:, :, subno]))
        cent = nx.eigenvector_centrality(G, weight='weight')
        cent_mat[:, subno] = np.array(list(cent.items()))[:, 1]

    np.savez('PTE_graphs.npz',
             conn_mat=conn_mat,
             label_ids=label_ids,
             labels=gord_labels,
             cent_mat=cent_mat,
             sub_ids=epi_ids)

    conn_mat = np.zeros((len(label_ids), len(label_ids), nsub))
    cent_mat = np.zeros((len(label_ids), nsub))

    for subno in range(nsub):
        conn_mat[:, :, subno] = get_connectivity(nonepi_data[:, :, subno],
                                                 labels=gord_labels,
                                                 label_ids=label_ids)
        G = nx.convert_matrix.from_numpy_array(np.abs(conn_mat[:, :, subno]))
        cent = nx.eigenvector_centrality(G, weight='weight')
        cent_mat[:, subno] = np.array(list(cent.items()))[:, 1]

    np.savez('NONPTE_graphs.npz',
             conn_mat=conn_mat,
             label_ids=label_ids,
             labels=gord_labels,
             cent_mat=cent_mat,
             sub_ids=nonepi_ids)

    print('done')
Exemple #5
0
subTest_varmain = sp.zeros(len(subTest_IDs)); subTest_varc1 = sp.zeros(len(subTest_IDs)); subTest_varc2 = sp.zeros(len(subTest_IDs))
for ind in range(len(sub_ID)):
    varmain = reg_var[ind]
    varc1 = reg_cvar1[ind]
    varc2 = reg_cvar2[ind]
    if int(subAtlas_idx[ind]) !=1:  
        subTest_varmain[count1] = varmain
        subTest_varc1[count1] = varc1
        subTest_varc2[count1] = varc2
        count1 +=1

np.savetxt(cf.out_dir + "/subjects_testing.csv", subTest_IDs, delimiter=",", fmt='%s')
write_text_timestamp(log_fname, str(len(subTest_IDs)) + ' subjects will be used for hypothesis testing.')
#%%
# reads reference data and creates atlas by BrainSync algorithm
subAtlas_data = load_bfp_data(subAtlas_fname, int(cf.lentime))

if cf.atlas_groupsync == 'True':
    write_text_timestamp(log_fname, 'User Option: Group BrainSync algorithm will be used for atlas creation')
    atlas_data, _, _, _ = groupBrainSync(subAtlas_data)
    write_text_timestamp(log_fname, 'Done creating atlas') 
else:
    write_text_timestamp(log_fname, 'User Option: representative subject will be used for atlas creation')
    subRef_data, subRef_num = IDrefsub_BrainSync(subAtlas_data)
    write_text_timestamp(log_fname, 'Subject number ' + str(subRef_num) + ' will be used for atlas creation')
    atlas_data = generate_avgAtlas(subRef_data, subAtlas_data)
    
spio.savemat(os.path.join(cf.out_dir + '/atlas.mat'), {'atlas_data': atlas_data})
del subAtlas_data
#%% sync and calculates geodesic distances
subTest_data = load_bfp_data(subTest_fname, int(cf.lentime))
Exemple #6
0
def load_all_data(atlas_labels):

    atlas = spio.loadmat(atlas_labels)

    gord_labels = atlas['labels'].squeeze()

    label_ids = np.unique(gord_labels)  # unique label ids

    # remove WM label from connectivity analysis
    label_ids = np.setdiff1d(label_ids, (2000, 0))

    # with open(epi_txt) as f:
    #     epiIds = f.readlines()
    #
    # with open(nonepi_txt) as f:
    #     nonepiIds = f.readlines()
    #
    # epiIds = list(map(lambda x: x.strip(), epiIds))
    # nonepiIds = list(map(lambda x: x.strip(), nonepiIds))
    # # random.shuffle(epiIds)
    # # random.shuffle(nonepiIds)
    # # print(len(epiIds), epiIds)
    # epi_files = list()
    # nonepi_files = list()
    #
    # for sub in epiIds:
    #     fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
    #                          sub + '_rest_bold.32k.GOrd.mat')
    #     if os.path.isfile(fname):
    #         epi_files.append(fname)
    #
    # for sub in nonepiIds:
    #     fname = os.path.join(studydir, sub, 'BFP', sub, 'func',
    #                          sub + '_rest_bold.32k.GOrd.mat')
    #     if os.path.isfile(fname):
    #         nonepi_files.append(fname)

    adhd_fnames, tdc_fnames, gt_labels = load_csv()
    adhd_data = load_bfp_data(adhd_fnames, 235)
    tdc_data = load_bfp_data(tdc_fnames, 235)

    nsub = adhd_data.shape[2]

    conn_mat = np.zeros((nsub, len(label_ids), len(label_ids)))
    parcorr_mat = np.zeros((nsub, len(label_ids), len(label_ids)))
    cent_mat = np.zeros((nsub, len(label_ids)))
    input_feat = np.zeros((nsub, len(label_ids), adhd_data.shape[0]))
    print(conn_mat.shape, input_feat.shape)
    print(adhd_data.shape, tdc_data.shape, gord_labels.shape)

    _, _, ref_sub = get_connectivity(tdc_data[:, :, 0],
                                     labels=gord_labels,
                                     label_ids=label_ids)

    for subno in range(nsub):  # num of subjects
        conn_mat[subno, :, :], parcorr_mat[
            subno, :, :], time_series = get_connectivity(adhd_data[:, :,
                                                                   subno],
                                                         labels=gord_labels,
                                                         label_ids=label_ids)

        #G = nx.convert_matrix.from_numpy_array(np.abs(conn_mat[subno, :, :]))
        #cent = nx.eigenvector_centrality(G, weight='weight')
        #cent_mat[subno, :] = np.array(list(cent.items()))[:,1]
        # print(ref_sub.shape, time_series.shape)
        input_feat[subno, :, :] = np.transpose(
            brainSync(ref_sub.T, time_series.T)[0])

    np.savez(
        '../ADHD_parPearson_BCI-DNI.npz',
        conn_mat=conn_mat,
        partial_mat=parcorr_mat,
        features=input_feat,  # 36x16x171
        label_ids=label_ids,
        cent_mat=cent_mat)

    ##============================================================================
    print("healthy subjects")
    nsub = tdc_data.shape[2]

    conn_mat = np.zeros((nsub, len(label_ids), len(label_ids)))
    parcorr_mat = np.zeros((nsub, len(label_ids), len(label_ids)))
    cent_mat = np.zeros((nsub, len(label_ids)))
    input_feat = np.zeros((nsub, len(label_ids), tdc_data.shape[0]))
    print(conn_mat.shape, input_feat.shape)
    # here we are using same number of training subjects for epi and nonepi.
    for subno in range(nsub):
        conn_mat[subno, :, :], parcorr_mat[
            subno, :, :], time_series = get_connectivity(tdc_data[:, :, subno],
                                                         labels=gord_labels,
                                                         label_ids=label_ids)
        #G = nx.convert_matrix.from_numpy_array(np.abs(conn_mat[subno, :, :]))
        #cent = nx.eigenvector_centrality(G, weight='weight')
        # cent_mat[subno, :] = np.array(list(cent.items()))[:,1]
        input_feat[subno, :, :] = np.transpose(
            brainSync(ref_sub.T, time_series.T)[0])

    np.savez(
        '../TDC_parPearson_BCI-DNI.npz',
        conn_mat=conn_mat,  # n_subjects*16*16
        partial_mat=parcorr_mat,
        features=input_feat,  # n_subjects * 16 x 171
        label_ids=label_ids,
        cent_mat=cent_mat)

    print('done')