#####################################################
#                                                   #
#           test part for testing correctness of    #
#                  Perceptron class                 #
#                                                   #
#####################################################
if __name__ == '__main__':

    # small example for testing perceptron class

    import matplotlib.pyplot as plt
    from read_iris import read_iris_dataset

    # read train and test from iris dataset
    trainX, validX, testX, trainY, validY, testY = read_iris_dataset(
        rand_state=0, train_ratio=0.60, valid_ratio=0.20, test_ratio=0.20)
    #print(trainX.shape[0], validX.shape[0], testX.shape[0], trainY.shape[0], validY.shape[0], testY.shape[0])

    # for classifying Iris setosa
    #trainY = np.where(trainY == 'Iris-setosa', 1, 0)
    #testY = np.where(testY == 'Iris-setosa', 1, 0)

    # for classifying Iris-versicolor
    trainY = np.where(trainY == 'Iris-versicolor', 1, 0)
    validY = np.where(validY == 'Iris-versicolor', 1, 0)
    testY = np.where(testY == 'Iris-versicolor', 1, 0)

    # for classifying Iris-versicolor
    #trainY = np.where(trainY == 'Iris-virginica', 1, 0)
    #testY = np.where(testY == 'Iris-virginica', 1, 0)
    # write in file
    file = open('find_good_adalines.txt', 'w')
    ratio_of_train_set = 0.7
    ratio_of_valid_set = 0.15
    ratio_of_test_set = 0.15
    min_test_error = 10000.0
    best_learning = np.inf
    best_random_state = np.inf

    for random_state in range(0, 8):

        # read train and test from iris dataset
        trainX, validX, testX, trainY, validY, testY = read_iris_dataset(rand_state=random_state,
                                                                         train_ratio=ratio_of_train_set,
                                                                         valid_ratio=ratio_of_valid_set,
                                                                         test_ratio=1 - (ratio_of_train_set + ratio_of_valid_set),
                                                                         order=order)
        # print(trainX, testX, trainY, testY)

        # standard scaler
        scaler = preprocessing.StandardScaler().fit(trainX)
        trainX = scaler.transform(trainX)
        validX = scaler.transform(validX)
        testX = scaler.transform(testX)

        # map labels name
        map = {'Iris-setosa': 1, 'Iris-versicolor': 2, 'Iris-virginica': 3}
        temp = np.zeros(trainY.shape, dtype=int)
        for idx, label in enumerate(trainY):
            temp[idx] = map[trainY[idx][0]]
Exemple #3
0
#           test part for testing correctness of    #
#                  k_fold function                  #
#                                                   #
#####################################################
if __name__ == '__main__':

    # small example for testing k-fold function
    import numpy as np

    import matplotlib.pyplot as plt
    from read_iris import read_iris_dataset
    from perceptron_one_vs_all import perceptron_one_vs_all

    # read train and test from iris dataset
    trainX, testX, trainY, testY = read_iris_dataset(rand_state=0,
                                                     train_ratio=0.7,
                                                     test_ratio=0.15)
    #print(trainX, testX, trainY, testY)

    #map labels name
    map = {'Iris-setosa': 1, 'Iris-versicolor': 2, 'Iris-virginica': 3}
    temp = np.zeros(trainY.shape, dtype=int)
    for idx, label in enumerate(trainY):
        temp[idx] = map[trainY[idx][0]]
    trainY = np.copy(temp)

    temp = np.zeros(testY.shape, dtype=int)
    for idx, label in enumerate(testY):
        temp[idx] = map[testY[idx][0]]
    testY = np.copy(temp)